The spatial assessment criteria system for hybridizing renewable energy sources, such as hybrid solar-wind farms, is critical in selecting ideal installation sites that maximize benefits, reduce costs, protect the environment, and serve the community. However, a systematic approach to designing indicator systems is rarely used in relevant site selection studies. Therefore, the current paper attempts to present an inclusive framework based on content validity to create an effective criteria system for siting wind-solar plants. To this end, the criteria considered in the related literature are captured, and the top 10 frequent indicators are identified. The Delphi technique is used to subject commonly used factors to expert judgments. Other factors are considered according to expert recommendations. In this context, the assessment tool was a combination of questionnaires and interviews with experts from scientific backgrounds that reflect the measurement target. The item-level content validity index (I-CVI) is applied along with the modified Kappa statistic (k*) to analyze expert ratings and suggestions. The results demonstrate the superiority of 9 and 4 commonly used factors and the suggested factors, respectively. The 13 criteria have achieved high agreement among experts at I-CVIs ≥ 0.78 and k*s > 0.76. The conclusion can be drawn that the modified Kappa statistic used in this analysis has a more significant effect on eliminating irrelevant factors. The current methodology and consequences might pave the way for making informed decisions to locate wind and solar farms.
16S ribosomal RNA (16S rRNA) gene sequences used to study bacterial phylogeny and taxonomy have been by far the most common housekeeping genetic marker utilized for identification and ancestor determination. This study aimed to investigate, for the first time, the relationship between Klebsiella spp. isolated from clinical and environmental samples in Iraq.
Fifty Klebsiella spp. isolates were isolated from clinical and environmental sources. Twenty-five isolates were collected from a fresh vegetable (Apium graveolens) and 25 from clinical samples (sputum, wound swab, urine). Enteric bacteria were isolated on selective and differential media and identified by an automatic identification system, vitek-2.
... Show MoreIn this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de
... Show MoreOne of the most interested problems that recently attracts many research investigations in Protein-protein interactions (PPI) networks is complex detection problem. Detecting natural divisions in such complex networks is proved to be extremely NP-hard problem wherein, recently, the field of Evolutionary Algorithms (EAs) reveals positive results. The contribution of this work is to introduce a heuristic operator, called protein-complex attraction and repulsion, which is especially tailored for the complex detection problem and to enable the EA to improve its detection ability. The proposed heuristic operator is designed to fine-grain the structure of a complex by dividing it into two more complexes, each being distinguished with a core pr
... Show MoreThe objective of an Optimal Power Flow (OPF) algorithm is to find steady state operation point which minimizes generation cost, loss etc. while maintaining an acceptable system performance in terms of limits on generators real and reactive powers, line flow limits etc. The OPF solution includes an objective function. A common objective function concerns the active power generation cost. A Linear programming method is proposed to solve the OPF problem. The Linear Programming (LP) approach transforms the nonlinear optimization problem into an iterative algorithm that in each iteration solves a linear optimization problem resulting from linearization both the objective function and constrains. A computer program, written in MATLAB environme
... Show MoreFire incidences are classed as catastrophic events, which mean that persons may experience mental distress and trauma. The development of a robotic vehicle specifically designed for fire extinguishing purposes has significant implications, as it not only addresses the issue of fire but also aims to safeguard human lives and minimize the extent of damage caused by indoor fire occurrences. The primary goal of the AFRC is to undergo a metamorphosis, allowing it to operate autonomously as a specialized support vehicle designed exclusively for the task of identifying and extinguishing fires. Researchers have undertaken the tasks of constructing an autonomous vehicle with robotic capabilities, devising a universal algorithm to be employed
... Show MoreUpper limb amputation is a condition that severely limits the amputee’s movement. Patients who have lost the use of one or more of their upper extremities have difficulty performing activities of daily living. To help improve the control of upper limb prosthesis with pattern recognition, non-invasive approaches (EEG and EMG signals) is proposed in this paper and are integrated with machine learning techniques to recognize the upper-limb motions of subjects. EMG and EEG signals are combined, and five features are utilized to classify seven hand movements such as (wrist flexion (WF), outward part of the wrist (WE), hand open (HO), hand close (HC), pronation (PRO), supination (SUP), and rest (RST)). Experiments demonstrate that usin
... Show MoreIn this work a model of a source generating truly random quadrature phase shift keying (QPSK) signal constellation required for quantum key distribution (QKD) system based on BB84 protocol using phase coding is implemented by using the software package OPTISYSTEM9. The randomness of the sequence generated is achieved by building an optical setup based on a weak laser source, beam splitters and single-photon avalanche photodiodes operating in Geiger mode. The random string obtained from the optical setup is used to generate the quadrature phase shift keying signal constellation required for phase coding in quantum key distribution system based on BB84 protocol with a bit rate of 2GHz/s.
A geographic information system (GIS) is a very effective management and analysis tool. Geographic locations rely on data. The use of artificial neural networks (ANNs) for the interpretation of natural resource data has been shown to be beneficial. Back-propagation neural networks are one of the most widespread and prevalent designs. The combination of geographic information systems with artificial neural networks provides a method for decreasing the cost of landscape change studies by shortening the time required to evaluate data. Numerous designs and kinds of ANNs have been created; the majority of them are PC-based service domains. Using the ArcGIS Network Analyst add-on, you can locate service regions around any network
... Show More