Preferred Language
Articles
/
ijs-813
Some Results of (α, β) Derivations on Prime Semirings
...Show More Authors

      This paper investigates the concept (α, β) derivation on semiring and extend a few results of this map on prime semiring. We establish the commutativity of prime semiring and investigate when (α, β) derivation becomes zero.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon May 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On a New Kind of Collection of Subsets Noted by δ–field and Some Concepts Defined on δ–field
...Show More Authors

     The objective of this paper is, first, study a new collection of sets such as field and we discuss the properties of this collection. Second, introduce a new concepts related to the field such as measure on field, outer measure on field and we obtain some important results deals with these concepts. Third, introduce the concept of null-additive on field as a generalization of the concept of measure on field. Furthermore, we establish new concept related to - field noted by weakly null-additive on field as a generalizations of the concepts of measure on and null-additive. Finally, we introduce the restriction of a set function  on field and many of its properties and characterizations are given.

View Publication Preview PDF
Crossref
Publication Date
Sun Mar 06 2016
Journal Name
Baghdad Science Journal
On (σ,τ)-Derivations and Commutativity of Prime and Semi prime Γ-rings
...Show More Authors

Let R be a Г-ring, and σ, τ be two automorphisms of R. An additive mapping d from a Γ-ring R into itself is called a (σ,τ)-derivation on R if d(aαb) = d(a)α σ(b) + τ(a)αd(b), holds for all a,b ∈R and α∈Γ. d is called strong commutativity preserving (SCP) on R if [d(a), d(b)]α = [a,b]α(σ,τ) holds for all a,b∈R and α∈Γ. In this paper, we investigate the commutativity of R by the strong commutativity preserving (σ,τ)-derivation d satisfied some properties, when R is prime and semi prime Г-ring.

View Publication Preview PDF
Crossref
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
Jordan left (?,?) -derivations Of ?-prime rings
...Show More Authors

It was known that every left (?,?) -derivation is a Jordan left (?,?) – derivation on ?-prime rings but the converse need not be true. In this paper we give conditions to the converse to be true.

View Publication Preview PDF
Crossref
Publication Date
Tue Mar 14 2023
Journal Name
Iraqi Journal Of Science
On Two Sided -n-Derivations in Prime near – Rings
...Show More Authors

In this paper, we investigate prime near – rings with two sided α-n-derivations
satisfying certain differential identities. Consequently, some well-known results
have been generalized. Moreover, an example proving the necessity of the primness
hypothesis is given.

View Publication Preview PDF
Publication Date
Sun Mar 01 2009
Journal Name
Baghdad Science Journal
Some Results On Lie Ideals With (σ,τ)-derivationIn Prime Rings
...Show More Authors

In this paper, we proved that if R is a prime ring, U be a nonzero Lie ideal of R , d be a nonzero (?,?)-derivation of R. Then if Ua?Z(R) (or aU?Z(R)) for a?R, then either or U is commutative Also, we assumed that Uis a ring to prove that: (i) If Ua?Z(R) (or aU?Z(R)) for a?R, then either a=0 or U is commutative. (ii) If ad(U)=0 (or d(U)a=0) for a?R, then either a=0 or U is commutative. (iii) If d is a homomorphism on U such that ad(U) ?Z(R)(or d(U)a?Z(R), then a=0 or U is commutative.

View Publication Preview PDF
Crossref
Publication Date
Wed Jan 12 2022
Journal Name
Iraqi Journal Of Science
Jordan Permuting 3-Derivations of Prime Rings
...Show More Authors

The main purpose of this work is to generalize Daif's result by introduceing the concept of Jordan (α β permuting 3-derivation on Lie ideal and generalize these result by introducing the concept of generalized Jordan (α β permuting 3-derivation 

View Publication Preview PDF
Publication Date
Wed Feb 16 2022
Journal Name
Iraqi Journal Of Science
Generalized Permuting 3-Derivations of Prime Rings
...Show More Authors

This work generalizes Park and Jung's results by introducing the concept of generalized permuting 3-derivation on Lie ideal.

View Publication Preview PDF
Publication Date
Sun Sep 29 2019
Journal Name
Iraqi Journal Of Science
Dependent Element and Free Actions of Centralizer and Reverse Centralizer on Prime and Semiprime Semirings
...Show More Authors

     This paper develops the work of Mary Florence et.al. on centralizer of semiprime semirings and presents reverse centralizer of semirings with several propositions and lemmas. Also introduces the notion of dependent element and free actions on semirings with some results of free action of centralizer and reverse centralizer on semiprime semirings and some another mappings.

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
Semigroup ideal in Prime Near-Rings with Derivations
...Show More Authors

In this paper we generalize some of the results due to Bell and Mason on a near-ring N admitting a derivation D , and we will show that the body of evidence on prime near-rings with derivations have the behavior of the ring. Our purpose in this work is to explore further this ring like behavior. Also, we show that under appropriate additional hypothesis a near-ring must be a commutative ring.

View Publication Preview PDF
Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Physics: Conference Series
Generalized Γ-n-Derivations on Prime Γ-Near-Rings
...Show More Authors
Abstract<p>The main purpose of this paper is to define generalized Γ-n-derivation, study and investigate some results of generalized Γ-n-derivation on prime Γ-near-ring G and <italic>K</italic> be a nonzero semi-group ideal of <italic>G</italic> which force G to be a commutative ring.</p>
View Publication
Scopus (1)
Scopus Crossref