Preferred Language
Articles
/
ijs-8069
Predicting COVID-19 in Iraq using Frequent Weighting for Polynomial Regression in Optimization Curve Fitting
...Show More Authors

     The worldwide pandemic Coronavirus (Covid-19) is a new viral disease that spreads mostly through nasal discharge and saliva from the lips while coughing or sneezing. This highly infectious disease spreads quickly and can overwhelm healthcare systems if not controlled. However, the employment of machine learning algorithms to monitor analytical data has a substantial influence on the speed of decision-making in some government entities.        ML algorithms trained on labeled patients’ symptoms cannot discriminate between diverse types of diseases such as COVID-19. Cough, fever, headache, sore throat, and shortness of breath were common symptoms of many bacterial and viral diseases.

This research focused on the numerous tendencies and projected expansion of the Iraq pandemic to encourage people and governments to take preventive measures. This work is an established basic benchmark for demonstrating machine learning's capabilities for pandemic prediction.

The suggested approach for forecasting the number of COVID-19 cases can assist governments in taking safeguards to avoid the disease's spread. We have demonstrated the effectiveness of our strategy using publicly available datasets and models. A polynomial network is trained on this premise, and the parameters are optimized using frequent weighting. When compared to linear models, the polynomial model predicts better and is more effective in forecasting COVID-19 new confirmed cases. As well, it aims to analyze the spread of COVID-19 in Iraq and optimize polynomial regression. In time series-based models, curve fitting using frequent weighting to implement models such as linear regression and polynomial regression is utilized to estimate the new daily infection number. The datasets were collected from March 13, 2020, to December 12, 2021. The continuous COVID-19 pandemic puts both human lives and the economy at risk. If AI could forecast the next daily hospitalization number, it may be a useful tool in combating this pandemic sickness.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Journal Of Science
Medical Image Classification for Coronavirus Disease (COVID-19) Using Convolutional Neural Networks
...Show More Authors

     The coronavirus is a family of viruses that cause different dangerous diseases that lead to death. Two types of this virus have been previously found: SARS-CoV, which causes a severe respiratory syndrome, and MERS-CoV, which causes a respiratory syndrome in the Middle East. The latest coronavirus, originated in the Chinese city of Wuhan, is known as the COVID-19 pandemic. It is a new kind of coronavirus that can harm people and was first discovered in Dec. 2019. According to the statistics of the World Health Organization (WHO), the number of people infected with this serious disease has reached more than seven million people from all over the world. In Iraq, the number of people infected has reached more than tw

... Show More
View Publication Preview PDF
Scopus (15)
Crossref (6)
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Diagnosing COVID-19 Infection in Chest X-Ray Images Using Neural Network
...Show More Authors

With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques.  T

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Ifip Advances In Information And Communication Technology
Rapid Thrombogenesis Prediction in Covid-19 Patients Using Machine Learning
...Show More Authors

Machine Learning (ML) algorithms are increasingly being utilized in the medical field to manage and diagnose diseases, leading to improved patient treatment and disease management. Several recent studies have found that Covid-19 patients have a higher incidence of blood clots, and understanding the pathological pathways that lead to blood clot formation (thrombogenesis) is critical. Current methods of reporting thrombogenesis-related fluid dynamic metrics for patient-specific anatomies are based on computational fluid dynamics (CFD) analysis, which can take weeks to months for a single patient. In this paper, we propose a ML-based method for rapid thrombogenesis prediction in the carotid artery of Covid-19 patients. Our proposed system aims

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Apr 14 2022
Journal Name
Plos One
The passage of time in Iraq during the covid-19 pandemic
...Show More Authors

The covid-19 global pandemic has influenced the day-to-day lives of people across the world. One consequence of this has been significant distortion to the subjective speed at which people feel like time is passing. To date, temporal distortions during covid-19 have mainly been studied in Europe. The current study therefore sought to explore experiences of the passage of time in Iraq. An online questionnaire was used to explore the passage of time during the day, week and the 11 months since the first period of covid-19 restrictions were imposed in Iraq. The questionnaire also measured affective and demographic factors, and task-load. The results showed that distortions to the passage of time were widespread in Iraq. Participants co

... Show More
View Publication
Scopus (9)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sun Mar 26 2023
Journal Name
Wasit Journal Of Pure Sciences
Covid-19 Prediction using Machine Learning Methods: An Article Review
...Show More Authors

The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Jan 12 2022
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
A Pharmacoeconomics Study for Anticoagulants used for Hospitalized COVID-19 Patients in Al-Najaf Al-Ashraf city –Iraq(Conference Paper )#
...Show More Authors

Abstract

Background: The novel coronavirus 2 (SARS?CoV?2) pandemic is a pulmonary disease, which leads to cardiac, hematologic, and renal complications. Anticoagulants are used for COVID-19 infected patients because the infection increases the risk of thrombosis. The world health organization (WHO), recommend prophylaxis dose of anticoagulants: (Enoxaparin or unfractionated Heparin for hospitalized patients with COVID-19 disease. This has created an urgent need to identify effective medications for COVID-19 prevention and treatment. The value of COVID-19 treatments is affected by cost-effectiveness analysis (CEA) to inform relative value and how to best maximize social welfare through eviden

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Mon Jun 26 2023
Journal Name
International Conference On Scientific Research & Innovation (icsri 2022)
Age and gender profile of coronavirus disease 2019 (COVID 19) in Quarantine Center in Baghdad, Iraq
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Mon Jun 26 2023
Journal Name
International Conference On Scientific Research & Innovation (icsri 2022)
Age and gender profile of coronavirus disease 2019 (COVID 19) in Quarantine Center in Baghdad, Iraq
...Show More Authors

Scopus Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Using a hybrid SARIMA-NARNN Model to Forecast the Numbers of Infected with (COVID-19) in Iraq
...Show More Authors

Coronavirus disease (COVID-19) is an acute disease that affects the respiratory system which initially appeared in Wuhan, China. In Feb 2019 the sickness began to spread swiftly throughout the entire planet, causing significant health, social, and economic problems. Time series is an important statistical method used to study and analyze a particular phenomenon, identify its pattern and factors, and use it to predict future values. The main focus of the research is to shed light on the study of SARIMA, NARNN, and hybrid models, expecting that the series comprises both linear and non-linear compounds, and that the ARIMA model can deal with the linear component and the NARNN model can deal with the non-linear component. The models

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Int. J. Nonlinear Anal. Appl.
Time series analysis of the number of covid-19 deaths in Iraq
...Show More Authors

Preview PDF
Scopus (1)
Scopus