This paper proposes a new methodology for improving network security by introducing an optimised hybrid intrusion detection system (IDS) framework solution as a middle layer between the end devices. It considers the difficulty of updating databases to uncover new threats that plague firewalls and detection systems, in addition to big data challenges. The proposed framework introduces a supervised network IDS based on a deep learning technique of convolutional neural networks (CNN) using the UNSW-NB15 dataset. It implements recursive feature elimination (RFE) with extreme gradient boosting (XGB) to reduce resource and time consumption. Additionally, it reduces bias towards the majority class of the dataset by combining the Synthetic Minority Oversampling Technique (SMOTE) with the Bayesian Gaussian Mixture Model (BGMM) to solve the data imbalance problem. The results demonstrate that this model greatly outperforms the existing approaches, attaining identification rates in the binary classification of up to 98.80% and the multiple group classification of up to 96.49%.
Cadastral map environment is directed, more than ever before, towards Artificial Intelligence use to produce fast and accurate maps and keep up with the huge population growth. The traditional approach currently in production of maps is expensive and effort-intensive in addition to be considered as highly time-consuming process. UAV-based cadastral mapping imagery that use automatic techniques are newly being exploited to accelerate the process of production or updating. The state-of-the-art intelligent algorithms are capable to extract land boundaries from images better than conventional techniques. This paper presents an automatic workflow of cadastral map production based on land boundary and automatic f
... Show MoreThe nonlinear optical properties response of nematic liquid crystal (6CHBT) and the impact of doping with two kinds of nanoparticles; Fe3O4 magnetic nanoparticles and SbSI ferroelectric nanoparticles have been studied using the non-linear dynamic method through z-scan measurement technique. This was achieved utilizing CW He-Ne laser. The pure LC and magnetic LC nanoparticle composite samples had a maximum absorption while the ferroelectric LC nanoparticle composite had a minimum absorption of the incident light. The nonlinear refractive index was positive for the pure LC and the rod-like ferronematic LC composite samples, while it was negative for the ferroelectric LC composite. The studying of the nonlinear optical
... Show MoreIn this paper, the impact of magnetic force, rotation, and nonlinear heat radiation on the peristaltic flow of a hybrid bio -nanofluids through a symmetric channel are investigated. Under the assumption of a low Reynolds number and a long wavelength, the exact solution of the expression for stream function, velocity, heat transfer coefficient, induced magnetic field, magnetic force, and temperature are obtained by using the Adomian decomposition method. The findings show that the magnetic force contours improve when the magnitude of the Hartmann number M is high and decreases when rotation increases. Lastly, the effects of essential parameters that appear in the problem are analyzed through a graph. Plotting all figures is done using the
... Show MoreIn this article, the influence of group nano transition metal oxides such as {(MnO2), (Fe2O3) and (CuO)} thin films on the (ZnO-TiO2) electric characteristics have been analyzed. The prepared films deposited on glass substrate laser Nd-YAG with wavelength (ℷ =1064 nm) ,energy of (800mJ) and number of shots (400). The density of the film was found to be (200 nm) at room temperature (RT) and annealing temperature (573K).Using DC Conductivity and Hall Effect, we obtained the electrical properties of the films. The DC Conductivity shows that that the activation energies decrease while the σRT at annealing temperature with different elements increases the formation of mixed oxides. The Hall effect, the elec
... Show MoreIn this study, a 3 mm thickness 7075-T6 aluminium alloy sheet was used in the friction stir welding process. Using the design of experiment to reduce the number of experiments and to obtain the optimum friction stir welding parameters by utilizing Taguchi technique based on the ultimate tensile test results. Orthogonal array of L9 (33) was used based on three numbers of the parameters and three levels for each parameter, where shoulder-workpiece interference depth (0.20, 0.25, and 0.3) mm, pin geometry (cylindrical thread flat end, cylindrical thread with 3 flat round end, cylindrical thread round end), and thread pitch (0.8, 1, and 1.2) mm) this technique executed by Minitab 17 software. The results showed th
... Show MoreMixed phase rutile/anatase of TiO2 was prepared and studied by a closed field DC magnetron sputtering configuration (CFDCMS). It was found that the contents of rutile increased from the ratio of 38% to 53% as the deposition time increased from 3.5 hours to 4.5 hours.
The photocatalytic activity of the mixed phase rutile/anatase TiO2 was measured by monitoring the degradation of the blue methylene dye in an aqueous solution, under exposure to UV-radiation, using UV-vis absorption spectroscopy. It was proven that the photocatalytic activity in the mixed phase (TiO2) is a function of rutile content reaching a maximum value at 53% rutile. Thus, the effect of synergy between anatase- TiO2 and rutile- TiO2 was observed. It was observed that
In this paper,a prey-predator model with infectious disease in predator population
is proposed and studied. Nonlinear incidence rate is used to describe the transition of
disease. The existence, uniqueness and boundedness of the solution are discussed.
The existences and the stability analysis of all possible equilibrium points are
studied. Numerical simulation is carried out to investigate the global dynamical
behavior of the system.
The quality of Global Navigation Satellite Systems (GNSS) networks are considerably influenced by the configuration of the observed baselines. Where, this study aims to find an optimal configuration for GNSS baselines in terms of the number and distribution of baselines to improve the quality criteria of the GNSS networks. First order design problem (FOD) was applied in this research to optimize GNSS network baselines configuration, and based on sequential adjustment method to solve its objective functions.
FOD for optimum precision (FOD-p) was the proposed model which based on the design criteria of A-optimality and E-optimality. These design criteria were selected as objective functions of precision, whic
... Show MoreDirectional Compact Geographic Forwarding (DCGF) routing protocol promises a minimal overhead generation by utilizing a smart antenna and Quality of Service (QoS) aware aggregation. However, DCGF was tested only in the attack-free scenario without involving the security elements. Therefore, an investigation was conducted to examine the routing protocol algorithm whether it is secure against attack-based networks in the presence of Denial-of-Service (DoS) attack. This analysis on DoS attack was carried out using a single optimal attacker, A1, to investigate the impact of DoS attack on DCGF in a communication link. The study showed that DCGF does not perform efficiently in terms of packet delivery ratio and energy consumption even on a sin
... Show More