This paper proposes a new methodology for improving network security by introducing an optimised hybrid intrusion detection system (IDS) framework solution as a middle layer between the end devices. It considers the difficulty of updating databases to uncover new threats that plague firewalls and detection systems, in addition to big data challenges. The proposed framework introduces a supervised network IDS based on a deep learning technique of convolutional neural networks (CNN) using the UNSW-NB15 dataset. It implements recursive feature elimination (RFE) with extreme gradient boosting (XGB) to reduce resource and time consumption. Additionally, it reduces bias towards the majority class of the dataset by combining the Synthetic Minority Oversampling Technique (SMOTE) with the Bayesian Gaussian Mixture Model (BGMM) to solve the data imbalance problem. The results demonstrate that this model greatly outperforms the existing approaches, attaining identification rates in the binary classification of up to 98.80% and the multiple group classification of up to 96.49%.
Hydrogen fuel is a good alternative to fossil fuels. It can be produced using a clean energy without contaminated emissions. This work is concerned with experimental study on hydrogen production via solar energy. Photovoltaic module is used to convert solar radiation to electrical energy. The electrical energy is used for electrolysis of water into hydrogen and oxygen by using alkaline water electrolyzer with stainless steel electrodes. A MATLAB computer program is developed to solve a four-parameter-model and predict the characteristics of PV module under Baghdad climate conditions. The hydrogen production system is tested at different NaOH mass concentration of (50,100, 200, 300) gram. The maximum hydrogen produc
... Show MoreIn this study, mesoporous silica (MPS) is made using the sol-gel method from a cheap source (Na2SiO3) using the surfactant hydroxycetyl hydroxyethyl dimonium chloride as a template. The task is the adsorption-based removal of the medication metoprolol (MP) at concentrations between 10 and 50 ppm. Variables such as: contact time, dose of adsorbent, starting concentration of adsorbate, and adsorption temperature were studied which show the equilibrium time and adsorbent dose are 40 min and 0.05 g respectively. The Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models were fitted to the data obtained from the experiments. Comparing the outcomes showed that, of the four investigated isotherm models, the Freundlich equation m
... Show MoreThe nuclear level density parameter in non Equi-Spacing Model (NON-ESM), Equi-Spacing Model (ESM) and the Backshifted Energy Dependent Fermi Gas model (BSEDFG) was determined for 106 nuclei; the results are tabulated and compared with the experimental works. It was found that there are no recognizable differences between our results and the experimental -values. The calculated level density parameters have been used in computing the state density as a function of the excitation energies for 58Fe and 246Cm nuclei. The results are in a good agreement with the experimental results from earlier published work.
The present study aims to evaluate the biosorption of reactive orange dye by using garden grass. Experiments were carried out in a batch reactor to obtain equilibrium and thermodynamic data. Experimental parameters affecting the biosorption process such as pH, shaking time, initial dye concentrations, and temperature were thoroughly examined. The optimum pH for removal was found to be 4. Fourier transform infrared spectroscopy analysis indicated that the electronegative groups on the surface of garden grass were the major groups responsible for the biosorption process. Four sorption isotherm models were employed to analyze the experimental data of which Temkin and Pyzhey model was found to be most suitable one. The maxim
... Show MoreThe binary cluster model (BCM) and the two-frequency shell model (TFSM) have been used to study the ground state matter densities of neutron-rich 6He and 11Li halo nuclei. Calculations show that both models provide a good description on the matter density distribution of above nuclei. The root-mean square (rms) proton, neutron and matter radii of these halo nuclei obtained by TFSM have been successfully obtained. The elastic charge form factors for these halo nuclei are studied through combining the charge density distribution obtained by TFSM with the plane wave Born approximation (PWBA).
Objective:To measure the acceptance level of the Personal Digital Assistance (PDA)’suse among nursing students as a tool of education in the Kingdom of Saudi Arabia. Methodology: Eighty-nine nursing students participated in this cross-sectional descriptive study by completing a questionnaire based on the Technology Acceptance Model (TAM) by Davis. Two dimensions were explored and evaluated; (1) the applicability of the TAM model in assessing this technology; and (2) the overall percentage of students’ agreement on the different TAM variables. Results: This study presented significant positive influence bet
Physically based modeling approach has been widely developed in recent years for the simulation of dam failure process due to the lack of field data. This paper provides and describes a physically-based model depending on dimensional analysis and hydraulic simulation methods for estimating the maximum water level and the wave propagation time from breaching of field test dams. The field physical model has been constructed in Dabbah city to represent the collapse of the Roseires dam in Sudan. Five cases of a dam failure were studied to simulate water flood conditions by changing initial water height in the reservoir (0.8, 1.0, 1.2, 1.4 and 1.5 m respectively).The physical model working under five cases, case 5 had the greatest influence of t
... Show MoreInterval methods for verified integration of initial value problems (IVPs) for ODEs have been used for more than 40 years. For many classes of IVPs, these methods have the ability to compute guaranteed error bounds for the flow of an ODE, where traditional methods provide only approximations to a solution. Overestimation, however, is a potential drawback of verified methods. For some problems, the computed error bounds become overly pessimistic, or integration even breaks down. The dependency problem and the wrapping effect are particular sources of overestimations in interval computations. Berz (see [1]) and his co-workers have developed Taylor model methods, which extend interval arithmetic with symbolic computations. The latter is an ef
... Show MoreThe two body model of (Core+n) within the radial wave functions of the cosh potential has been used to investigate the ground state features such as the proton, neutron and matter densities, the root mean square (RMS) nuclear proton, neutron, charge and mass radii of unstable neutron-rich 14B, 15C, 19C and 22N nuclei. The calculated results show that the two body model with the radial wave functions of the cosh potential succeeds in reproducing neutron halo in these nuclei.
Theoretically, an eight-term chaos system is presented. The effect of changing the initial conditions values on behavior Chen system was studied. The basic dynamical properties of system are analyzed like time series, attractor, FFT spectrum, and bifurcation. Where the system appears steady state behavior at initial condition xi , yi , zi equal (0, 0, 0) respectively and it convert to quasi-chaotic at xi ,yi ,zi equal (-0.1, 0.5,-0.6). Finally, the system become hyper chaotic at xi ,yi ,zi equal(-0.5, 0.5,-0.6 ) that can used it in many applications like secure communication.