Most frequently used models for modeling and forecasting periodic climatic time series do not have the capability of handling periodic variability that characterizes it. In this paper, the Fourier Autoregressive model with abilities to analyze periodic variability is implemented. From the results, FAR(1), FAR(2) and FAR(2) models were chosen based on Periodic Autocorrelation function (PeACF) and Periodic Partial Autocorrelation function (PePACF). The coefficients of the tentative model were estimated using a Discrete Fourier transform estimation method. FAR(1) models were chosen as the optimal model based on the smallest values of Periodic Akaike (PAIC) and Bayesian Information criteria (PBIC). The residual of the fitted models was diagnosed to be white noise. The in-sample forecast showed a close reflection of the original rainfall series while the out-sample forecast exhibited a continuous periodic forecast from January 2019 to December 2020 with relatively small values of Periodic Root Mean Square Error (PRMSE), Periodic Mean Absolute Error (PMAE) and Periodic Mean Absolute Percentage Error (PMAPE). The comparison of FAR(1) model forecast with AR(3), ARMA(2,1), ARIMA(2,1,1) and SARIMA( 1,1,1)(1,1,1)12 model forecast indicated that FAR(1) outperformed the other models as it exhibited a continuous periodic forecast. The continuous monthly periodic rainfall forecast indicated that there will be rapid climate change in Nigeria in the coming yearly and Nigerian Government needs to put in place plans to curtail its effects.
In this research, the methods of Kernel estimator (nonparametric density estimator) were relied upon in estimating the two-response logistic regression, where the comparison was used between the method of Nadaraya-Watson and the method of Local Scoring algorithm, and optimal Smoothing parameter λ was estimated by the methods of Cross-validation and generalized Cross-validation, bandwidth optimal λ has a clear effect in the estimation process. It also has a key role in smoothing the curve as it approaches the real curve, and the goal of using the Kernel estimator is to modify the observations so that we can obtain estimators with characteristics close to the properties of real parameters, and based on medical data for patients with chro
... Show More