In this paper, the propose is to use the xtreme value distribution as the rate of occurrence of the non-homogenous Poisson process, in order to improve the rate of occurrence of the non-homogenous process, which has been called the Extreme value Process. To estimate the parameters of this process, it is proposed to use the Maximum Likelihood method, Method of Moment and a smart method represented by the Artificial Bee Colony:(ABC) algorithm to reach an estimator for this process which represents the best data representation. The results of the three methods are compared through a simulation of the model, and it is concluded that the estimator of (ABC) is better than the estimator of the maximum likelihood method and method of moment in estimating the time rate of occurrence of the proposed Extreme value process. The research also includes a realistic application that deals with the operating periods of two successive stops for the raw materials factory from the General Company for Northern Cement / Badush Cement Factories (new) during the period from 1/4/2018 to 31/1/2019, in order to reach the time rate of factory stops.
Let Y be a"uniformly convex n-Banach space, M be a nonempty closed convex subset of Y, and S:M→M be adnonexpansive mapping. The purpose of this paper is to study some properties of uniform convex set that help us to develop iteration techniques for1approximationjof"fixed point of nonlinear mapping by using the Mann iteration processes in n-Banachlspace.
Abstract: Data mining is become very important at the present time, especially with the increase in the area of information it's became huge, so it was necessary to use data mining to contain them and using them, one of the data mining techniques are association rules here using the Pattern Growth method kind enhancer for the apriori. The pattern growth method depends on fp-tree structure, this paper presents modify of fp-tree algorithm called HFMFFP-Growth by divided dataset and for each part take most frequent item in fp-tree so final nodes for conditional tree less than the original fp-tree. And less memory space and time.
In the current research work, a method to reduce the color levels of the pixels within digital images was proposed. The recent strategy was based on self organization map neural network method (SOM). The efficiency of recent method was compared with the well known logarithmic methods like Floyd-Steinberg (Halftone) dithering and Octtrees (Quadtrees) methods. Experimental results have shown that by adjusting the sampling factor can produce higher-quality images with no much longer run times, or some better quality with shorter running times than existing methods. This observation refutes the repeated neural networks is necessarily slow but have best results. The generated quantization map can be exploited for color image compression, clas
... Show MoreDropping packets with a linear function between two configured queue thresholds in Random Early Detection (RED) model is incapable of yielding satisfactory network performance. In this article, a new enhanced and effective active queue management algorithm, termed Double Function RED (DFRED in short) is developed to further curtail network delay. Specifically, DFRED algorithm amends the packet dropping probability approach of RED by dividing it into two sub-segments. The first and second partitions utilizes and implements a quadratic and linear increase respectively in the packet dropping probability computation to distinguish between two traffic loads: low and high. The ns-3 simulation performance evaluations clearly indicate t
... Show MoreRivest Cipher 4 (RC4) is an efficient stream cipher that is commonly used in internet protocols. However, there are several flaws in the key scheduling algorithm (KSA) of RC4. The contribution of this paper is to overcome some of these weaknesses by proposing a new version of KSA coined as modified KSA . In the initial state of the array is suggested to contain random values instead of the identity permutation. Moreover, the permutation of the array is modified to depend on the key value itself. The proposed performance is assessed in terms of cipher secrecy, randomness test and time under a set of experiments with variable key size and different plaintext size. The results show that the RC4 with improves the randomness and secrecy with
... Show MoreExtractive multi-document text summarization – a summarization with the aim of removing redundant information in a document collection while preserving its salient sentences – has recently enjoyed a large interest in proposing automatic models. This paper proposes an extractive multi-document text summarization model based on genetic algorithm (GA). First, the problem is modeled as a discrete optimization problem and a specific fitness function is designed to effectively cope with the proposed model. Then, a binary-encoded representation together with a heuristic mutation and a local repair operators are proposed to characterize the adopted GA. Experiments are applied to ten topics from Document Understanding Conference DUC2002 datas
... Show MoreSeveral remote sensor network (WSN) tasks require sensor information join. This in-processing Join is configured in parallel sensor hub to save battery power and limit the communication cost. Hence, a parallel join system is proposed for sensor networks. The proposed parallel join algorithm organizes in section-situated databases. A novel join method has been proposed for remote WSNs to limit the aggregate communication cost and enhance execution. This approach depends on two procedures; section-situated databases and parallel join algorithm utilized to store sensor information and speed up processing respectively. A segment arranged databases store information table in segmented shrewd. The Parallel-Joining WSN algorithm is effectively
... Show MoreIn this paper, precision agriculture system is introduced based on Wireless Sensor Network (WSN). Soil moisture considered one of environment factors that effect on crop. The period of irrigation must be monitored. Neural network capable of learning the behavior of the agricultural soil in absence of mathematical model. This paper introduced modified type of neural network that is known as Spiking Neural Network (SNN). In this work, the precision agriculture system is modeled, contains two SNNs which have been identified off-line based on logged data, one of these SNNs represents the monitor that located at sink where the period of irrigation is calculated and the other represents the soil. In addition, to reduce p
... Show MoreThis paper describes a new proposed structure of the Proportional Integral Derivative (PID) controller based on modified Elman neural network for the DC-DC buck converter system which is used in battery operation of the portable devices. The Dolphin Echolocation Optimization (DEO) algorithm is considered as a perfect on-line tuning technique therefore, it was used for tuning and obtaining the parameters of the modified Elman neural-PID controller to avoid the local minimum problem during learning the proposed controller. Simulation results show that the best weight parameters of the proposed controller, which are taken from the DEO, lead to find the best action and unsaturated state that will stabilize the Buck converter system performan
... Show MoreThis book includes three main chapters: 1. Functions & Their Derivatives. 2. Minimum, Maximum and Inflection points. 3. Partial Derivative. In addition to many examples and exercises for the purpose of acquiring the student's ability to think correctly in solving mathematical questions.