Hyperglycemia is a complication of diabetes (high blood sugar). This condition causes biochemical alterations in the cells of the body, which may lead to structural and functional problems throughout the body, including the eye. Diabetes retinopathy (DR) is a type of retinal degeneration induced by long-term diabetes that may lead to blindness. propose our deep learning method for the early detection of retinopathy using an efficient net B1 model and using the APTOS 2019 dataset. we used the Gaussian filter as one of the most significant image-processing algorithms. It recognizes edges in the dataset and reduces superfluous noise. We will enlarge the retina picture to 224×224 (the Efficient Net B1 standard) and utilize data augmentation methods to enhance the dataset photographs, and balance the dataset (which was quite uneven), to avoid overfitting. By using Transfer learning we save training time by using a previously learned deep CNN and transfer learning weights. In this research, EfficientNetB1 is compared against Xception, InceptionV3, MobileNet, and ResNet50 as a deep transfer learning model. The proposed model's accuracy, precision, recall, and f1-score are all examined. The EfficientNetB1 model outperforms all others in terms of overall testing accuracy (86.1%), sensitivity (87.24%), precision (97.6%), and F1-Score (89.32 percent). This approach might help physicians diagnose Diabetic Retinopathy earlier.
Among the metaheuristic algorithms, population-based algorithms are an explorative search algorithm superior to the local search algorithm in terms of exploring the search space to find globally optimal solutions. However, the primary downside of such algorithms is their low exploitative capability, which prevents the expansion of the search space neighborhood for more optimal solutions. The firefly algorithm (FA) is a population-based algorithm that has been widely used in clustering problems. However, FA is limited in terms of its premature convergence when no neighborhood search strategies are employed to improve the quality of clustering solutions in the neighborhood region and exploring the global regions in the search space. On the
... Show MoreAflatoxin B1 (AFB1) is a mycotoxin produced mainly by fungus Aspergillus flavus in food and feed . It is considered as a carcinogenic toxin for human and animals. The current study was designed for produce antibody (IgG) against aflatoxin B1.It was achieved by immunization of experimental animals (New Zealand White rabbits) with prepared antigen consist of aflatoxin B1-BSA Conjugate (100 and 200 μg ) concentrations, and detection of produced antibody using Ouchterlony double immunodiffusion and ELISA techniques,. Ochterlony and ELISA techniques revealed that, high titer of IgG antibody was obtained by rabbit’s immunize, and the titer of antibody was increased steadily during the immunization schedule. The highest titer of antibody rea
... Show MoreBackground: Diabetic nephropathy is a common complication of diabetes mellitus type2. The neutrophil gelatinase Associated lippocallin (NGAL) is an ubiquitous protein consist of 178 amino acid. NGAL can be identified in plasma and urine starting 2- 4 hours after a kidney injury resulting changes in glomerular filtration and tubular reabsorption and with increased secretion in tubular epithelial cells.
Objective: This study aimed to evaluate the role of serum Neutrophil Gelatinse Associated Lipocallin (NGAL) in early detection nephropathy.
Method : This study was conducted in Medical City, Baghdad Teaching Hospital during the period from December 2015to June 2016.The study included (90) subjects with age range between (30 – 56)yea
Hygienic engineering has dedicated a lot of time and energy to studying water filtration because of how important it is to human health. Thorough familiarity with the filtration process is essential for the design engineer to keep up with and profit from advances in filtering technology and equipment as the properties of raw water continue to change. Because it removes sediment, chemicals, odors, and microbes, filtration is an integral part of the water purification process. The most popular technique for treating surface water for municipal water supply is considered fast sand filtration, which can be achieved using either gravity or pressure sand filters. Predicting the performance of units in water treatment plants is a basic pri
... Show MoreThe research aims to show the dimensions of organizational trust represented by (administrative policies opportunities for innovation and self innovation and self- realization,availability of information,prevailing organizational values) and its reiationship to achieving the strategic position of banks represented by formation of expectations,buiiding networks,learning operations As the research was applied in each of the banks (middle east)Iraqi investment,Al-Ahly Iraqi, Business Bay, Al- Mansour investment bank),the qusestionnaire was adopted as a tool to collect data and information from the sample number (138)who are in the site (department director, division ,M.division director ,division officer, unit officer)the statistica
... Show MoreAbstract Software-Defined Networking (commonly referred to as SDN) is a newer paradigm that develops the concept of a software-driven network by separating data and control planes. It can handle the traditional network problems. However, this excellent architecture is subjected to various security threats. One of these issues is the distributed denial of service (DDoS) attack, which is difficult to contain in this kind of software-based network. Several security solutions have been proposed recently to secure SDN against DDoS attacks. This paper aims to analyze and discuss machine learning-based systems for SDN security networks from DDoS attack. The results have indicated that the algorithms for machine learning can be used to detect DDoS
... Show MoreActivity recognition (AR) is a new interesting and challenging research area with many applications (e.g. healthcare, security, and event detection). Basically, activity recognition (e.g. identifying user’s physical activity) is more likely to be considered as a classification problem. In this paper, a combination of 7 classification methods is employed and experimented on accelerometer data collected via smartphones, and compared for best performance. The dataset is collected from 59 individuals who performed 6 different activities (i.e. walk, jog, sit, stand, upstairs, and downstairs). The total number of dataset instances is 5418 with 46 labeled features. The results show that the proposed method of ensemble boost-based classif
... Show MoreA new human-based heuristic optimization method, named the Snooker-Based Optimization Algorithm (SBOA), is introduced in this study. The inspiration for this method is drawn from the traits of sales elites—those qualities every salesperson aspires to possess. Typically, salespersons strive to enhance their skills through autonomous learning or by seeking guidance from others. Furthermore, they engage in regular communication with customers to gain approval for their products or services. Building upon this concept, SBOA aims to find the optimal solution within a given search space, traversing all positions to obtain all possible values. To assesses the feasibility and effectiveness of SBOA in comparison to other algorithms, we conducte
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreAlways MRI and CT Medical images are noisy so that preprocessing is necessary for enhance these images to assist clinicians and make accurate diagnosis. Firstly, in the proposed method uses two denoising filters (Median and Slantlet) are applied to images in parallel and the best enhanced image gained from both filters is voted by use PSNR and MSE as image quality measurements. Next, extraction of brain tumor from cleaned images is done by segmentation method based on k-mean. The result shows that the proposed method is giving an optimal solution due to denoising method which is based on multiple filter types to obtain best clear images and that is leads to make the extraction of tumor more precision best.<
... Show More