In this article, the backstepping control scheme is proposed to stabilize the fractional order Riccati matrix differential equation with retarded arguments in which the fractional derivative is presented using Caputo's definition of fractional derivative. The results are established using Mittag-Leffler stability. The fractional Lyapunov function is defined at each stage and the negativity of an overall fractional Lyapunov function is ensured by the proper selection of the control law. Numerical simulation has been used to demonstrate the effectiveness of the proposed control scheme for stabilizing such type of Riccati matrix differential equations.
To ensure fault tolerance and distributed management, distributed protocols are employed as one of the major architectural concepts underlying the Internet. However, inefficiency, instability and fragility could be potentially overcome with the help of the novel networking architecture called software-defined networking (SDN). The main property of this architecture is the separation of the control and data planes. To reduce congestion and thus improve latency and throughput, there must be homogeneous distribution of the traffic load over the different network paths. This paper presents a smart flow steering agent (SFSA) for data flow routing based on current network conditions. To enhance throughput and minimize latency, the SFSA distrib
... Show MoreAt the last years, the interesting of measurement spicilists was increased to study differential item functioning (DIF) wich is reflect the difference of propability true response for test item from subgroups which have equal level of ability . The aims of this research are, inform the DIFat Namers’scale(2009) for mental health to prepare students and detect items that have DIF. Sample research contants (540) students, we use Mantel- Haenzel chi-square to detect DIF. The results are point to there are (26) items have DIF according to gender which are delated form the scale after that.
This paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples
Abstract Introduction: MMP3 plays a crucial role in the process of bone erosion in the pathomechanism of rheumatoid arthritis (RA). It acts by removing the outer osteoid layer, which allows the osteoclasts to tightly connect and carry out the subsequent damage to the underlying bone. MMP3 can trigger the production of other MMPs like MMP-1, MMP-7, and MMP-9, it plays a pivotal role in the remodeling of connective tissues. Aim of the study: to assess the influence of MMP-3 serum levels and single-nucleotide polymorphisms of rs679620 in the rheumatoid arthritis patients' group in comparison to the control group. Subjects: eighty eight samples, 45 rheumatoid arthritis patients after being referred by their treating physician for regular RA
... Show MoreThe aim of this article is to study the solution of Elliptic Euler-Poisson-Darboux equation, by using the symmetry of Lie Algebra of orders two and three, as a contribution in partial differential equations and their solutions.
Complex-valued regular functions that are normalized in the open unit disk are vastly studied. The current study introduces a new fractional integrodifferential (non-linear) operator. Based on the pre-Schwarzian derivative, certain appropriate stipulations on the parameters included in this con-structed operator to be univalent and bounded are investigated and determined.
The study presents the modification of the Broyden-Flecher-Goldfarb-Shanno (BFGS) update (H-Version) based on the determinant property of inverse of Hessian matrix (second derivative of the objective function), via updating of the vector s ( the difference between the next solution and the current solution), such that the determinant of the next inverse of Hessian matrix is equal to the determinant of the current inverse of Hessian matrix at every iteration. Moreover, the sequence of inverse of Hessian matrix generated by the method would never approach a near-singular matrix, such that the program would never break before the minimum value of the objective function is obtained. Moreover, the new modification of BFGS update (H-vers
... Show More