Optimization is the task of minimizing or maximizing an objective function f(x) parameterized by x. A series of effective numerical optimization methods have become popular for improving the performance and efficiency of other methods characterized by high-quality solutions and high convergence speed. In recent years, there are a lot of interest in hybrid metaheuristics, where more than one method is ideally combined into one new method that has the ability to solve many problems rapidly and efficiently. The basic concept of the proposed method is based on the addition of the acceleration part of the Gravity Search Algorithm (GSA) model in the Firefly Algorithm (FA) model and creating new individuals. Some standard objective functions are used to compare the hybrid (FAGSA) method with FA and the traditional GSA to find the optimal solution. Simulation results obtained by MATLAB R2015a indicate that the hybrid algorithm has the ability to cross the local optimum limits with a faster convergence than the luminous Fireflies algorithm and the ordinary gravity search algorithm. Therefore, this paper proposes a new numerical optimization method based on integrating the properties of the two methods (luminous fireflies and gravity research). In most cases, the proposed method usually gives better results than the original methods individually.
Deep learning techniques are applied in many different industries for a variety of purposes. Deep learning-based item detection from aerial or terrestrial photographs has become a significant research area in recent years. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles and classification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing
... Show MoreDue to the spread of “Deepfake” in our society and the impact of this phenomenon on politicians, celebrities, and the privacy of individuals in particular, as well as, on the other hand, its impact on the electoral process as well as financial fraud, all these reasons prompted us to present a research paper dealing with this phenomenon. This paper presents a comprehensive review of Deepfake, how it is created, and who has produced it. This paper can be used as a reference and information source for the methods used to limit deepfake by detecting forgeries and minimizing its impact on society by preventing it. This paper reviews the results of much research in the field of deepfake, as well as the advantages of each method, a
... Show MoreThe aim of the current research is to know the degree to which middle school teachers and female teachers in the southern border schools use electronic educational alternatives in the field of education from their point of view and its relationship to some variables, and to achieve this goal, a random sample of (200) teachers was selected in southern border schools, and a questionnaire was prepared to collect The data, as well as the descriptive approach was used to achieve this goal. T-test and analysis of variance were used for the statistical treatment. The results concluded that the educational courses provided to male and female teachers are not sufficient. It has also been concluded that the use of electronic educational alternativ
... Show MoreImage classification can be defined as one of the most important tasks in the area of machine learning. Recently, deep neural networks, especially deep convolution networks, have participated greatly in end-to-end learning which reduce need for human designed features in the image recognition like Convolution Neural Network. It is offers the computation models which are made up of several processing layers for learning data representations with several abstraction levels. In this work, a pre-trained deep CNN is utilized according to some parameters like filter size, no of convolution, pooling, fully connected and type of activation function which includes 300 images for training and predict 100 image gender using probability measures. Re
... Show MoreAfter the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings
... Show MoreIn this current work, Purpose; to clearly the fundamental idea for constructing a design and
investigation of spur gear made of composite material its comes from the combination of (high
speeds, low noise, oil-les running, light weight, high strength, and more load capability)
encountered in modern engineering applications of the gear drives, when the usual metallic gear
cannot too overwhelming these combinations.
An analyzing of stresses and deformation under static and dynamic loading for spur gear tooth
by finite element method with isoparametric eight-nodded in total of 200 brick element with 340
nods in three degree of freedom per node was selected for this analysis. This is responsible for the
catastropic fa
The distribution of chilled water flow rate in terminal unit is an important factor used to evaluate the performance of central air conditioning unit. A prototype of A/C unit has been made, which contains three terminal units with a complete set of accessories (3-way valve, 2-way valve, and sensors) to study the effect of the main parameters, such as total water flow rate and chilled water supply temperature with variable valve opening. In this work, 40 tests were carried out. These tests were in two groups, 20 test for 3-way valve case and 20 test for 2-way valve case. These tests were performed at three levels of valve opening, total water flow rate and water supply temperature according to the design matrices establis
... Show MoreIn this study, the stress-strength model R = P(Y < X < Z) is discussed as an important parts of reliability system by assuming that the random variables follow Invers Rayleigh Distribution. Some traditional estimation methods are used to estimate the parameters namely; Maximum Likelihood, Moment method, and Uniformly Minimum Variance Unbiased estimator and Shrinkage estimator using three types of shrinkage weight factors. As well as, Monte Carlo simulation are used to compare the estimation methods based on mean squared error criteria.
The traveling salesman problem (TSP) is a well-known and important combinatorial optimization problem. The goal is to ï¬nd the shortest tour that visits each city in a given list exactly once and then returns to the starting city. In this paper we exploit the TSP to evaluate the minimum total cost (distance or time) for Iraqi cities. So two main methods are investigated to solve this problem; these methods are; Dynamic Programming (DP) and Branch and Bound Technique (BABT). For the BABT, more than one lower and upper bounds are be derived to gain the best one. The results of BABT are completely identical to DP, with less time for number of cities (n), 5 ≤ n ≤ 25. These results proof the efficiency of BABT compared with so
... Show MoreEstimation of the unknown parameters in 2-D sinusoidal signal model can be considered as important and difficult problem. Due to the difficulty to find estimate of all the parameters of this type of models at the same time, we propose sequential non-liner least squares method and sequential robust M method after their development through the use of sequential approach in the estimate suggested by Prasad et al to estimate unknown frequencies and amplitudes for the 2-D sinusoidal compounds but depending on Downhill Simplex Algorithm in solving non-linear equations for the purpose of obtaining non-linear parameters estimation which represents frequencies and then use of least squares formula to estimate
... Show More