Photometric techniques are one of the fundamentals and of great importance in the study of astronomical phenomena, including galaxies, and has witnessed a wide development during the last 100 years in equipment, sensitivity and accuracy in data analysis, especially after the direction toward space telescopes and the widespread use of a CCD camera. Therefore, in this research, an analytical study will be made to compare two types of galaxies, which are spiral and lenticular galaxies, using photometric techniques and compare the photometric parameters of each type with tables and illustrations. An analysis of the morphological of the two galaxies was done by using the Least Square Fitting Method, and it was fully explained in the research. The results showed the clear difference between the structure of spiral and lenticular galaxies.
Feature extraction provide a quick process for extracting object from remote sensing data (images) saving time to urban planner or GIS user from digitizing hundreds of time by hand. In the present work manual, rule based, and classification methods have been applied. And using an object- based approach to classify imagery. From the result, we obtained that each method is suitable for extraction depending on the properties of the object, for example, manual method is convenient for object, which is clear, and have sufficient area, also choosing scale and merge level have significant effect on the classification process and the accuracy of object extraction. Also from the results the rule-based method is more suitable method for extracting
... Show MoreIn this work, satellite images for Razaza Lake and the surrounding area
district in Karbala province are classified for years 1990,1999 and
2014 using two software programming (MATLAB 7.12 and ERDAS
imagine 2014). Proposed unsupervised and supervised method of
classification using MATLAB software have been used; these are
mean value and Singular Value Decomposition respectively. While
unsupervised (K-Means) and supervised (Maximum likelihood
Classifier) method are utilized using ERDAS imagine, in order to get
most accurate results and then compare these results of each method
and calculate the changes that taken place in years 1999 and 2014;
comparing with 1990. The results from classification indicated that
Gender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea
... Show MoreFractal geometry is receiving increase attention as a quantitative and qualitative model for natural phenomena description, which can establish an active classification technique when applied on satellite images. In this paper, a satellite image is used which was taken by Quick Bird that contains different visible classes. After pre-processing, this image passes through two stages: segmentation and classification. The segmentation carried out by hybrid two methods used to produce effective results; the two methods are Quadtree method that operated inside Horizontal-Vertical method. The hybrid method is segmented the image into two rectangular blocks, either horizontally or vertically depending on spectral uniformity crit
... Show MoreDiabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show MoreTwo different polyvinyl alcohol/polyvinyl chloride (PVA/PVC) hollow fiber composite nanofiltration membranes were prepared after PVC hollow fiber membranes were coated using dip-coating method with PVA aqueous solution, which was composed of PVA, fatty alcohol polyoxyethylene ether (AEO9), and water [PVA/AEO9/water (4:0.5:95.5) wt%]. Effect of two different PVC hollow fiber immersion times in coating solution were studied. Cross-section, internal and external surfaces of the PVC hollow fibers and PVA/PVC composite nanofiltration membranes structures were characterized by scanning electron microscopy (SEM), pure water permeation flux and solutes rejection. It was found that, the coating layer thickness on the outer surface of the 19 wt% P
... Show MoreClassification of network traffic is an important topic for network management, traffic routing, safe traffic discrimination, and better service delivery. Traffic examination is the entire process of examining traffic data, from intercepting traffic data to discovering patterns, relationships, misconfigurations, and anomalies in a network. Between them, traffic classification is a sub-domain of this field, the purpose of which is to classify network traffic into predefined classes such as usual or abnormal traffic and application type. Most Internet applications encrypt data during traffic, and classifying encrypted data during traffic is not possible with traditional methods. Statistical and intelligence methods can find and model traff
... Show MoreIn the current research work, a method to reduce the color levels of the pixels within digital images was proposed. The recent strategy was based on self organization map neural network method (SOM). The efficiency of recent method was compared with the well known logarithmic methods like Floyd-Steinberg (Halftone) dithering and Octtrees (Quadtrees) methods. Experimental results have shown that by adjusting the sampling factor can produce higher-quality images with no much longer run times, or some better quality with shorter running times than existing methods. This observation refutes the repeated neural networks is necessarily slow but have best results. The generated quantization map can be exploited for color image compression, clas
... Show MoreThis paper presents a combination of enhancement techniques for fingerprint images affected by different type of noise. These techniques were applied to improve image quality and come up with an acceptable image contrast. The proposed method included five different enhancement techniques: Normalization, Histogram Equalization, Binarization, Skeletonization and Fusion. The Normalization process standardized the pixel intensity which facilitated the processing of subsequent image enhancement stages. Subsequently, the Histogram Equalization technique increased the contrast of the images. Furthermore, the Binarization and Skeletonization techniques were implemented to differentiate between the ridge and valley structures and to obtain one
... Show MoreThe huge amount of documents in the internet led to the rapid need of text classification (TC). TC is used to organize these text documents. In this research paper, a new model is based on Extreme Machine learning (EML) is used. The proposed model consists of many phases including: preprocessing, feature extraction, Multiple Linear Regression (MLR) and ELM. The basic idea of the proposed model is built upon the calculation of feature weights by using MLR. These feature weights with the extracted features introduced as an input to the ELM that produced weighted Extreme Learning Machine (WELM). The results showed a great competence of the proposed WELM compared to the ELM.