Preferred Language
Articles
/
ijs-7834
Employ Stress-Strength Reliability Technique in Case the Inverse Chen Distribution

This paper uses classical and shrinkage estimators to estimate the system reliability (R) in the stress-strength model when the stress and strength follow the Inverse Chen distribution (ICD). The comparisons of the proposed estimators have been presented using a simulation that depends on the mean squared error (MSE) criteria.

 

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Feb 28 2023
Journal Name
Iraqi Journal Of Science
Reliability of Stress - Strength and Its Estimation of Exponentiated Q-Exponential Distribution

      In this paper, we study a single stress-strength reliability system   , where Ƹ and ƴ are independently Exponentiated q-Exponential distribution. There are a few traditional estimating approaches that are  derived, namely  maximum likelihood estimation (MLE) and the Bayes (BE) estimators of R. A wide mainframe simulation is used to compare the performance of the proposed estimators using MATLAB program. A simulation study show that the Bayesian estimator is the best estimator than other estimation method under consideration using two criteria such as the “mean squares error (MSE)” and “mean absolutely error (MAPE)”.

Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Jul 01 2019
Journal Name
Iop Conference Series: Materials Science And Engineering
On Estimation of the Stress – Strength Reliability Based on Lomax Distribution
Abstract<p>The present paper concerns with the problem of estimating the reliability system in the stress – strength model under the consideration non identical and independent of stress and strength and follows Lomax Distribution. Various shrinkage estimation methods were employed in this context depend on Maximum likelihood, Moment Method and shrinkage weight factors based on Monte Carlo Simulation. Comparisons among the suggested estimation methods have been made using the mean absolute percentage error criteria depend on MATLAB program.</p>
Scopus (5)
Crossref (2)
Scopus Crossref
View Publication
Publication Date
Sat Jan 30 2021
Journal Name
Iraqi Journal Of Science
Estimating the Reliability Function of some Stress- Strength Models for the Generalized Inverted Kumaraswamy Distribution

This paper discusses reliability of the stress-strength model. The reliability functions 𝑅1 and 𝑅2 were obtained for a component which has an independent strength and is exposed to two and three stresses, respectively. We used the generalized inverted Kumaraswamy distribution GIKD with unknown shape parameter as well as known shape and scale parameters. The parameters were estimated from the stress- strength models, while the reliabilities 𝑅1, 𝑅2 were estimated by three methods, namely the Maximum Likelihood,  Least Square, and Regression.

 A numerical simulation study a comparison between the three estimators by mean square error is performed. It is found that best estimator between

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
2019 First International Conference Of Computer And Applied Sciences (cas)
Scopus (8)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Mon Jan 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Estimation of P(Y<X) in Case Inverse Kumaraswamy Distribution

The estimation of the stressÙ€ strength reliability of Invers Kumaraswamy distribution will be introduced in this paper based on the maximum likelihood, moment and shrinkage methods. The mean squared error has been used to compare among proposed estimators. Also a Monte Carlo simulation study is conducted to investigate the performance of the proposed methods in this paper.

Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Estimate the Parallel System Reliability in Stress-Strength Model Based on Exponentiated Inverted Weibull Distribution
Abstract<p>In this paper, we employ the maximum likelihood estimator in addition to the shrinkage estimation procedure to estimate the system reliability (<italic>R<sub>k</sub> </italic>) contain <italic>K<sup>th</sup> </italic> parallel components in the stress-strength model, when the stress and strength are independent and non-identically random variables and they follow two parameters Exponentiated Inverted Weibull Distribution (EIWD). Comparisons among the proposed estimators were presented depend on simulation established on mean squared error (MSE) criteria.</p>
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Doubly Type II Censoring of Two Stress-Strength System Reliability Estimation for Generalized Exponential-Poisson Distribution

 In this paper, a Bayesian analysis is made to estimate the Reliability of two stress-strength model systems. First: the reliability  of a one component strengths X under stress Y. Second, reliability  of one component strength under three stresses. Where X and Y are independent generalized exponential-Poison random variables with parameters (α,λ,θ) and (β,λ,θ) . The analysis is concerned with and based on doubly type II censored samples using gamma prior under four different loss functions, namely   quadratic loss function, weighted loss functions,  linear and non-linear exponential loss function. The estimators are compared by mean squared error criteria due to a simulation study. We also find that the mean square error is

... Show More
Scopus Crossref
View Publication
Publication Date
Fri Jun 04 2021
Journal Name
Journal Of Interdisciplinary Mathematics
Scopus (2)
Scopus Clarivate Crossref
View Publication
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
An Efficient Shrinkage Estimators For Generalized Inverse Rayleigh Distribution Based On Bounded And Series Stress-Strength Models
Abstract<p>In this paper, we investigate two stress-strength models (Bounded and Series) in systems reliability based on Generalized Inverse Rayleigh distribution. To obtain some estimates of shrinkage estimators, Bayesian methods under informative and non-informative assumptions are used. For comparison of the presented methods, Monte Carlo simulations based on the Mean squared Error criteria are applied.</p>
Scopus (3)
Crossref (2)
Scopus Crossref
View Publication
Publication Date
Mon Apr 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Estimators of the parameter and Reliability Function of Inverse Rayleigh Distribution" A comparison study "

     In this paper, Bayesian estimator for the parameter and reliability function of inverse Rayleigh distribution (IRD) were obtained Under three types of loss function, namely, square error loss function (SELF), Modified Square error loss function (MSELF) and Precautionary loss function (PLF),taking into consideration the  informative and non- informative  prior. The performance of such estimators was assessed on the basis of mean square error (MSE) criterion by performing a Monte Carlo simulation technique.

Crossref
View Publication Preview PDF