In this review paper, several research studies were surveyed to assist future researchers to identify available techniques in the field of infectious disease modeling across complex networks. Infectious disease modelling is becoming increasingly important because of the microbes and viruses that threaten people’s lives and societies in all respects. It has long been a focus of research in many domains, including mathematical biology, physics, computer science, engineering, economics, and the social sciences, to properly represent and analyze spreading processes. This survey first presents a brief overview of previous literature and some graphs and equations to clarify the modeling in complex networks, the detection of societies and their medical information, the identification of nodes, the method of communication with individuals and their spread, the analysis of their transmission through complex networks, and the detection of mathematical methods over the past century. Secondly, the types of epidemiological models and complex networks and the extent of their impact on humans are presented.
The paper uses the Direct Synthesis (DS) method for tuning the Proportional Integral Derivative (PID) controller for controlling the DC servo motor. Two algorithms are presented for enhancing the performance of the suggested PID controller. These algorithms are Back-Propagation Neural Network and Particle Swarm Optimization (PSO). The performance and characteristics of DC servo motor are explained. The simulation results that obtained by using Matlab program show that the steady state error is eliminated with shorter adjusted time when using these algorithms with PID controller. A comparative between the two algorithms are described in this paper to show their effectiveness, which is found that the PSO algorithm gives be
... Show MoreBackground/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the
... Show MoreAbstract
Due to the continuing demand for larger bandwidth, the optical transport becoming general in the access network. Using optical fiber technologies, the communications infrastructure becomes powerful, providing very high speeds to transfer a high capacity of data. Existing telecommunications infrastructures is currently widely used Passive Optical Network that apply Wavelength Division Multiplexing (WDM) and is awaited to play an important role in the future Internet supporting a large diversity of services and next generation networks. This paper presents a design of WDM-PON network, the simulation and analysis of transmission parameters in the Optisystem 7.0 environment for bidirectional traffic. The sim
... Show MoreLung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c
... Show MoreInformation security contributes directly to increase the level of trust between the government’s departments by providing an assurance of confidentiality, integrity, and availability of sensitive governmental information. Many threats that are caused mainly by malicious acts can shutdown the egovernment services. Therefore the governments are urged to implement security in e-government projects.
Some modifications were proposed to the security assessment multi-layer model (Sabri model) to be more comprehensive model and more convenient for the Iraqi government. The proposed model can be used as a tool to assess the level of security readiness of government departments, a checklist for the required security measures and as a commo
Technological development in recent years leads to increase the access speed in the networks that allow a huge number of users watching videos online. Video streaming is one of the most popular applications in networking systems. Quality of Experience (QoE) measurement for transmitted video streaming may deal with data transmission problems such as packet loss and delay. This may affect video quality and leads to time consuming. We have developed an objective video quality measurement algorithm that uses different features, which affect video quality. The proposed algorithm has been estimated the subjective video quality with suitable accuracy. In this work, a video QoE estimation metric for video strea
... Show MoreImitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing co
... Show More
Students’ feedback is crucial for educational institutions to assess the performance of their teachers, most opinions are expressed in their native language, especially for people in south Asian regions. In Pakistan, people use Roman Urdu to express their reviews, and this applied in the education domain where students used Roman Urdu to express their feedback. It is very time-consuming and labor-intensive process to handle qualitative opinions manually. Additionally, it can be difficult to determine sentence semantics in a text that is written in a colloquial style like Roman Urdu. This study proposes an enhanced word embedding technique and investigates the neural word Embedding (Word2Vec and Glove) to determine which perfo
... Show MoreRheological instrument is one of the basic analytical measurements for diagnosing the properties of polymers fluids to be used in any industry. In this research polycarbonate was chosen because of its importance in many areas and possesses several distinct properties.
Two kinds of rheometers devices were used at different range of temperatures from 220 ˚C-300 ˚C to characterize the rheological technique of melted polycarbonate (Makrolon 2805) by a combination of different investigating techniques. We compared the results of the linear (oscillatory) method with the non-linear (steady-state) method; the former method provided the storage and the loss modulus of melted polycarbonate, and presented the Cox-Merz model as well. One of the