Theoretical study of ten crown ethers substituents were established to investigate some parameters that give clear view about their validity and applicability in the design of anticancer agents. Restricted hartree fock method (RHF/3-21G) were used to determine the energy difference between highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO-LUMO gap) , ionization energy, global hardness and total energy. Strong binding ability with potassium ion were obtained in some of these compounds depend on the type of substituents added to both nitrogen atoms out of the ring cavity. Such binding with potassium in abnormal and divided cancer cells result in inhibition of tumor cell growth by disrupting potassium ion homeostasis leading to kill ailing cells. Compound 10 represents the best suggested material which posses the potent anticancer activity due to its physicochemical properties required for anticancer drugs.
This research focuses on the removal and adsorption of Fe (III) ion using a low cost commercial polyacrylic acid hydrogel beads as adsorbent. The effects of time, initial concentration and pH on the metal ion adsorption capacity were investigated. The regeneration of the hydrogel bead and recovery of the metal ion adsorbed were study. The adsorption isotherm models were applied on experimental data and it is shown that the Langmuir model was the best one for Fe (III) ion removal. The maximum capacity was calculated. First-order and second- order kinetic models were used and it is shown that the experimental data was in reliable compliance with the first- order model with R2 value of (0.9935, 0.9011, 0.9695, 0.9912) for all concentrations
... Show MoreThe cost‐effective dual functions zeolite‐carbon composite (DFZCC) was prepared using an eco‐friendly substrate prepared from bio‐waste and an organic adhesive at intermediate conditions. The green synthesis method used in this study ensures that chemically harmless compounds are used to obtain a homogeneous distribution of zeolite over porous carbon. The greenly prepared dual‐function composite was extensively characterized using Fourier transform infrared, X‐ray diffraction, thermogravimetric analysis, N2 adsorption/desorption isotherms, field emission scanning electron microscope, dispersive analysis by X‐ray, and point of zero charges. DFZCC had a surface area o
The power factors and electronic thermal conductivities in bismuth telluride (Bi2Te3), lead-telluride (PbTe), and gallium arsenide (GaAs) at room temperature (300K) quantum wires and quantum wells are theoretically investigated. Our formalism rigorously takes into account modification of these power factors and electronic thermal conductivities in free-surface wires and wells due to spatial confinement. From our numerical results, we predict a significant increase of the power factor in quantum wires with diameter w=20 Ã…. The increase is always stronger in quantum wires than in quantum wells of the corresponding dimensions. An unconfined phonon distribution assumed based on the bulk lattice thermal conductivity is then employed
... Show MoreNew ligands, N1, N4-bis (benzo[d]thiazol-2- ylcarbamothioyl) succinamide (L1) and N1, N4- bis (benzylcarbamothioyl)succinamide (L2), derived from succinyl chloride and 2-amino benzothiazole or benzylamine, respectively, have been used to prepare a set of transition metal complexes with the general formula [M2(L)Cl4], where L=L1 or L2, M = Mn(II), Ni(II), Cu(II), Cd(II), Co(II), Zn(II) or Hg(II). The synthesized compounds were characterized using various analytical techniques including TGA, 13C NMR, mass spectroscopy, 1H and Fourier-transform infrared (FTIR) spectroscopy, magnetic measurement, molar conductivity, electronic spectrum, (%M, %C, %H, %N) and atomic absorption flame (AAF) analysis. The results showed that (L1, L2) bin
... Show MoreThe goal of this study is to investigate the effects of heat transfer on a non-uniform inclined asymmetrical channel with couple stress fluids via a porous medium using incline magnetohydrodynamics. The governing equation is studied while using low Reynolds approximations and long-wavelength assumptions. Mathematical expressions for (pressure gradient), (temperature), (axial velocity), (heat temperature coefficient), and (stream function). A precise set of values for the various parameters in the present model has been used. The mathematical expressions for axial velocity, stream function, pressure gradient, and pressure rise per wavelength have been derived analytically. "MATHEMATICA" is used to present the computational result
... Show MoreA mathematical model constructed to study the combined effects of the concentration and the thermodiffusion on the nanoparticles of a Jeffrey fluid with a magnetic field effect the process of containing waves in a three-dimensional rectangular porous medium canal. Using the HPM to solve the nonlinear and coupled partial differential equations. Numerical results were obtained for temperature distribution, nanoparticles concentration, velocity, pressure rise, pressure gradient, friction force and stream function. Through the graphs, it was found that the velocity of fluid rises with the increase of a mean rate of volume flow and a magnetic parameter, while the velocity goes down with the increasing a Darcy number and lateral walls. Also, t
... Show MoreIn this present paper , a special model was built to govern the equations of two dimensional peristaltic transport to nanofluid flow of a heat source in a tapered considered in an asymmetric channel. The equations of dimensionless temperature concentration are analytical solve under assumption slow Reynolds number and long wave length. Furthermore, the results that receive by expressing the maximum pressure rise communicates increased in case of non-Newtonian fluid when equated with Newtonian fluid. Finally, MATHEMATICA 11 program has been used to solve such system after obtaining the initial conditions. Most of the results of drawing for many are obtained via above program .
PM3 and DFT (B3LYP) with a 6-311++G (2d, 2p) level of theoretical quantum mechanical calculations were employed to give investigation into the inhibition efficiency of the two new N-phenyl-ethylidene-5-bromo isatin derivatives which are N-phenyl-ethylidene-5-bromo-3[(imine aceto) urea]-2-oxo indole (NPEO) and N-phenyl-ethyeidine-5-bromo-3[(imine aceto) thiourea]-2-oxo indole (NPES). The calculated physical properties and quantum chemical parameters correlated to the inhibition efficiency all are studied and discussed at the equilibrium geometry in a vacuum, dimethyl sulfoxide and aqueous at their correct symmetry.
A field study was conducted at the college of Agriculture, Baghdad University-Jadiriyah to investigate the effect of adding potassium fertilizer and organic nutrient (Reef Amirich) on the population density of two sucking pests of cucumber, cotton whitefly, Bemisia tabaci and onion thrips, Thrips tabaci during the spring season/2016. Results indicated that potassium sulphate (50, 100 and 150 kg/ha) and organic nutrient (0.8 and 1.6ml/l) reduced both the population density of B. tabaci and T. tabaci nymphs depending on the fertilizer level of the user, the treatment 150 kg/ha for the potassium fertilizer and 1.6 ml/L for organic nutrient was the highest among others when minimized density of nymphs by 1.62 nymphs of B. tabaci/disk leaf and 0
... Show More