Preferred Language
Articles
/
ijs-7743
Discrete Optimal Control Mathematical Model of Diabetes Population

In this work, nonlinear diabetes controlled model with and without complications in a population is considered. The dynamic behavior of diabetes in a population by including a constant control is studied and investigated. The existence of all its possible fixed points is investigated as well as the conditions of the local stability of the considered model are set. We also find the optimal control strategy in order to reduce the number of people having diabetes with complications over a finite period of time. A numerical simulation is provided and confirmed the theoretical results.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Model Estimated Building in Finite Population Sampling

Abstract

The population is sets of vocabulary common in character or characters and it’s study subject or research . statistically , this sets is called study population (or abridgement population ) such as set of person or trees of special kind of fruits or animals or product  any country for any commodity through infinite temporal period term ... etc.

The population maybe finite if we can enclose the number of its members such as the students of finite school grade . and maybe infinite if we can not enclose the number of it is members such as stars or aquatic creatures in the sea . when we study any character for population the statistical data is concentrate by two metho

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
The Classical Continuous Optimal Control for Quaternary Nonlinear Parabolic Boundary Value Problems

In this paper, our purpose is to study the classical continuous optimal control (CCOC)  for quaternary nonlinear parabolic boundary value problems (QNLPBVPs). The existence and uniqueness theorem (EUTh) for the quaternary state vector solution (QSVS) of the weak form (WF) for the QNLPBVPs with a given quaternary classical continuous control vector (QCCCV) is stated and proved via the Galerkin Method (GM) and the first compactness theorem under suitable assumptions(ASSUMS). Furthermore, the continuity operator for the existence theorem of a QCCCV dominated by the QNLPBVPs is stated and proved under suitable conditions.

Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Apr 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Constraints Optimal Classical Continuous Control Vector Problem for Quaternary Nonlinear Hyperbolic System

This paper is concerned with the quaternary nonlinear hyperbolic boundary value problem (QNLHBVP) studding constraints quaternary optimal classical continuous control vector (CQOCCCV), the cost function (CF), and the equality and inequality quaternary state and control constraints vector (EIQSCCV). The existence of a CQOCCCV dominating by the QNLHBVP is stated and demonstrated using the Aubin compactness theorem (ACTH) under appropriate hypotheses (HYPs). Furthermore, mathematical formulation of the quaternary adjoint equations (QAEs) related to the quaternary state equations (QSE) are discovere  so as its weak form (WF) . The directional derivative (DD) of the Hamiltonian (Ham) is calculated. The necessary and sufficient conditions for

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Jan 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Continuous Classical Optimal Control governing by Triple Linear Parabolic Boundary Value Problem

This paper deals with the continuous classical optimal control problem for triple partial differential equations of parabolic type with initial and boundary conditions; the Galerkin method is used to prove the existence and uniqueness theorem of the state vector solution for given continuous classical control vector. The proof of the existence theorem of a continuous classical optimal control vector associated with the triple linear partial differential equations of parabolic type is given. The derivation of the Fréchet derivative for the cost function is obtained. At the end, the theorem of the necessary conditions for optimality of this problem is stated and is proved.

Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
SIMULATION OF OPTIMAL SPEED CONTROL FOR A DC MOTOR USING LINEAR QUADRATIC REGULATOR (LQR)


This paper describes DC motor speed control based on optimal Linear Quadratic Regulator (LQR) technique. Controller's objective is to maintain the speed of rotation of the motor shaft with a particular step response.The controller is modeled in MATLAB environment, the simulation results show that the proposed controller gives better performance and less settling time when compared with the traditional PID controller.

Crossref (4)
Crossref
View Publication Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Iraqi Journal Of Science
Boundary Optimal Control for Triple Nonlinear Hyperbolic Boundary Value Problem with State Constraints

The paper is concerned with the state and proof of the solvability theorem of unique state vector solution (SVS) of triple nonlinear hyperbolic boundary value problem (TNLHBVP), via utilizing the Galerkin method (GAM) with the Aubin theorem (AUTH), when the boundary control vector (BCV) is known. Solvability theorem of a boundary optimal control vector (BOCV) with equality and inequality state vector constraints (EINESVC) is proved. We studied the solvability theorem of a unique solution for the adjoint triple boundary value problem (ATHBVP) associated with TNLHBVP. The directional derivation (DRD) of the "Hamiltonian"(DRDH) is deduced. Finally, the necessary theorem (necessary conditions "NCOs") and the sufficient theorem (sufficient co

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Sep 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Mathematical Model for One Year Planning of a Manufactory

This paper is an attempt to help the manager of a manufactory to

plan for the next year by a scientific approach, to maximize the profit and Ø¢ provide optimal Ø¢ monthly quantities of Ø¢ production, Ø¢ inventory,

work-force, prices and sales. The computer programming helps us to execute that huge number of calculations.

View Publication Preview PDF
Publication Date
Wed Jan 12 2022
Journal Name
Iraqi Journal Of Science
Constructing of Analysis Mathematical Model for Stream Cipher Cryptosystems

The aim of this paper is to construct the analysis mathematical model for stream cipher cryptosystems in order to be cryptanalysis using the cryptanalysis tools based on plaintext attack (or part from it) or ciphertext only attack, choosing Brüer generator as study case of nonlinear stream cipher system.
The constructing process includes constructing the linear (or non-linear) equations system of the attacked nonlinear generator. The attacking of stream cipher cryptosystem means solving the equations system and that means finding the initial key values for each combined LFSR. 

View Publication Preview PDF
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Continuous Classical Optimal Control Problems for Triple Nonlinear Elliptic Boundary Value Problem

     In this research, our aim is to study the optimal control problem (OCP) for triple nonlinear elliptic boundary value problem (TNLEBVP). The Mint-Browder theorem is used to prove the existence and uniqueness theorem of the solution of the state vector for fixed control vector. The existence theorem for the triple continuous classical optimal control vector (TCCOCV) related to the TNLEBVP is also proved. After studying the existence of a unique solution for the triple adjoint equations (TAEqs) related to the triple of the state equations, we derive The Fréchet derivative (FD) of the cost function using Hamiltonian function. Then the theorems of necessity conditions and the sufficient condition for optimality of

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Mixed Optimal Control Vector for a Boundary Value Problem of Couple Nonlinear Elliptic Equations

       In this research, we study the classical continuous Mixed optimal control vector problem dominated by couple nonlinear elliptic PDEs. The existence theorem for the unique state vector solution of the considered couple nonlinear elliptic PDEs for a given continuous classical mixed control vector is stated and proved by applying the Minty-Browder theorem under suitable conditions.  Under suitable conditions, the existence theorem of a classical continuous mixed optimal control vector associated with the considered couple nonlinear elliptic PDEs  is stated and proved.

Scopus (1)
Scopus Crossref
View Publication Preview PDF