Minimizing the power consumption of electronic systems is one of the most critical concerns in the design of integrated circuits for very large-scale integration (VLSI). Despite the reality that VLSI design is known for its compact size, low power, low price, excellent dependability, and high functionality, the design stage remains difficult to improve in terms of time and power. Several optimization algorithms have been designed to tackle the present issues in VLSI design. This study discusses a bi-objective optimization technique for circuit partitioning based on a genetic algorithm. The motivation for the proposed research is derived from the basic concept that, if some portions of a circuit's system are deactivated during the processor's idle time, the circuit's power consumption is automatically reduced. To reduce the overall system's power consumption, maximization of sleep time and minimization of net cuts are required. To achieve these, an effective fitness function has been constructed in such a way that the balance criteria are also maintained. The approach has been tested on a set of net lists from the ISPD'98 benchmark suite, each containing 10 to 30 nodes. The experimental results are compared with two existing methods that clearly indicate the acceptability of the suggested method. The suggested strategy achieves an average reduction of 24.69% and 31.46% for net cut, whereas average extensions of 15.20% and 12.31% are observed in sleep time when compared with two existing methods. The proposed method also achieves an average power efficiency of 14.98% and 12.09% with respect to these two state-of-the-art methods.
In this paper the diagrams and divided power of the place polarization
(k )
ij , with
its capelli identities have been used, to study the complex of Lascoux in case of the
partition (4,4,4).
In this paper, the complex of Lascoux in the case of partition (3,3,2) has been studied by using diagrams ,divided power of the place polarization ) (k ij ,Capelli identites and the idea of mapping Cone .
Objective conditions for the possibility of punishment are legal or material facts –positive or negative that depart from the activity of the offender. The legislator comments on their subsequent verification on the formation of some crimes the possibility of.The application of punishment to the offender , but although they are facts of an object nature that approach and overlap with many systems and cases , they are distinguished by a certain subjectivity that differentiates them from each case that may seem similar or approach them. To clarify the ambiguity that may surround these conditions , Which may lead to confusion between them and what be similar to other cases due to the common effect that they have in common , which is the f
... Show MoreIn this study, a genetic algorithm (GA) is used to detect damage in curved beam model, stiffness as well as mass matrices of the curved beam elements is formulated using Hamilton's principle. Each node of the curved beam element possesses seven degrees of freedom including the warping degree of freedom. The curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory. The identification of damage is formulated as an optimization problem, binary and continuous genetic algorithms
(BGA, CGA) are used to detect and locate the damage using two objective functions (change in natural frequencies, Modal Assurance Criterion MAC). The results show the objective function based on change in natural frequency i
The aim of this work is to study the application of Weyl module resolution in the case of two rows, which will be specified in the partition (7, 6) and skew- partition (7,6)/(1,0) by using the homological Weyl (i.e. the contracting homotopy and place polarization).
Solving problems via artificial intelligence techniques has widely prevailed in different aspects. Implementing artificial intelligence optimization algorithms for NP-hard problems is still challenging. In this manuscript, we work on implementing the Naked Mole-Rat Algorithm (NMRA) to solve the n-queens problems and overcome the challenge of applying NMRA to a discrete space set. An improvement of NMRA is applied using the aspect of local search in the Variable Neighborhood Search algorithm (VNS) with 2-opt and 3-opt. Introducing the Naked Mole Rat algorithm based on variable neighborhood search (NMRAVNS) to solve N-queens problems with different sizes. Finding the best solution or set of solutions within a plausible amount of t
... Show MoreGenetic diversity was studied in 31 Iraqi common reed samples , which were collected from Iraqi marshes in Basrah , Messan and Thi-Qar provinces and also from different areas in Baghdad province . Random amplified polymorphic DNA (RAPD) technique was used for evaluation of genetic diversity between collected samples . Seven primers were used for polymorphism detecting between common reed samples . The results revealed 102 bands for the all samples when RAPD-PCR was used . The percentage rate for the monomorphic bands is 6.86% , while the percentage rate for the polymorphic bands is 93.13% , and the numbers of these bands are ranging between 10 to 17 for each used primer . The UBC1 primer gave the highest number of poly
... Show MoreIn this paper, a compact genetic algorithm (CGA) is enhanced by integrating its selection strategy with a steepest descent algorithm (SDA) as a local search method to give I-CGA-SDA. This system is an attempt to avoid the large CPU time and computational complexity of the standard genetic algorithm. Here, CGA dramatically reduces the number of bits required to store the population and has a faster convergence. Consequently, this integrated system is used to optimize the maximum likelihood function lnL(φ1, θ1) of the mixed model. Simulation results based on MSE were compared with those obtained from the SDA and showed that the hybrid genetic algorithm (HGA) and I-CGA-SDA can give a good estimator of (φ1, θ1) for the ARMA(1,1) model. Anot
... Show More
In this work, a novel technique to obtain an accurate solutions to nonlinear form by multi-step combination with Laplace-variational approach (MSLVIM) is introduced. Compared with the traditional approach for variational it overcome all difficulties and enable to provide us more an accurate solutions with extended of the convergence region as well as covering to larger intervals which providing us a continuous representation of approximate analytic solution and it give more better information of the solution over the whole time interval. This technique is more easier for obtaining the general Lagrange multiplier with reduces the time and calculations. It converges rapidly to exact formula with simply computable terms wit
... Show MoreNowadays, people's expression on the Internet is no longer limited to text, especially with the rise of the short video boom, leading to the emergence of a large number of modal data such as text, pictures, audio, and video. Compared to single mode data ,the multi-modal data always contains massive information. The mining process of multi-modal information can help computers to better understand human emotional characteristics. However, because the multi-modal data show obvious dynamic time series features, it is necessary to solve the dynamic correlation problem within a single mode and between different modes in the same application scene during the fusion process. To solve this problem, in this paper, a feature extraction framework of
... Show More