In this paper, the effects of prey’s fear on the dynamics of the prey, predator, and scavenger system incorporating a prey refuge with the linear type of functional response were studied theoretically as well as numerically approach. The local and global stabilities of all possible equilibrium points are investigated. The persistence conditions of the model are established. the local bifurcation analysis around the equilibrium points, as well as the Hopf bifurcation near the positive equilibrium point, are discussed and analyzed. Finally, numerical simulations are carried out, and the obtained trajectories are drowned using the application of Matlab version (6) to explain our found analytical result.
In this paper a prey-predator model involving Holling type IV functional response
and intra-specific competition is proposed and analyzed. The local stability analysis of
the system is carried out. The occurrence of a simple Hopf bifurcation is investigated.
The global dynamics of the system is investigated with the help of the Lyapunov
function and poincare-bendixson theorem. Finally, the numerical simulation is used to
study the global dynamical behavior of the system. It is observed that, the system has
either stable point or periodic dynamics.
In this paper, a harvested prey-predator model involving infectious disease in prey is considered. The existence, uniqueness and boundedness of the solution are discussed. The stability analysis of all possible equilibrium points are carried out. The persistence conditions of the system are established. The behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that the existence of disease and harvesting can give rise to multiple attractors, including chaos, with variations in critical parameters.
Scams remain among top cybercrime incidents happening around the world. Individuals with high susceptibility to persuasion are considered as risk-takers and prone to be scam victims. Unfortunately, limited number of research is done to investigate the relationship between appeal techniques and individuals' personality thus hindering a proper and effective campaigns that could help to raise awareness against scam. In this study, the impact of fear and rational appeal were examined as well as to identify suitable approach for individuals with high susceptibility to persuasion. To evaluate the approach, pretest and posttest surveys with 3 separate controlled laboratory experiments were conducted. This study found that rational appeal treatm
... Show MoreThis paper presents a novel idea as it investigates the rescue effect of the prey with fluctuation effect for the first time to propose a modified predator-prey model that forms a non-autonomous model. However, the approximation method is utilized to convert the non-autonomous model to an autonomous one by simplifying the mathematical analysis and following the dynamical behaviors. Some theoretical properties of the proposed autonomous model like the boundedness, stability, and Kolmogorov conditions are studied. This paper's analytical results demonstrate that the dynamic behaviors are globally stable and that the rescue effect improves the likelihood of coexistence compared to when there is no rescue impact. Furthermore, numerical simul
... Show MoreA three species food web model involving a stage structure and cannibalism in the top predator species is proposed and studied. It is assumed that the prey species growth logistically in the absence of predator and the predation process occurred according to theLotka-Volterra functional response. The existence, uniqueness and bounded-ness of the solution of the model are investigated. The local and global stability conditions of all possible equilibrium points are established.The persistence conditions of the model are also determined. The local bifurcation near each of the equilibrium points is analyzed. The global dynamics of the model is investigated numerically and compared with the obtained analytical results. It is observed that the p
... Show MoreIn this work, we consider a modification of the Lotka-Volterra food chain model of three species, each of them is growing logistically. We found that the model has eight equilibrium points, four of them always exist, while the rest exist under certain conditions. In terms of stability, we found that the system has five unstable equilibrium points, while the rest points are locally asymptotically stable under certain satisfying conditions. Finally, we provide an example to support the theoretical results.
In this work, we study two species of predator with two species of prey model, where the two species of prey live in two diverse habitats and have the ability to group-defense. Only one of the two predators tends to switch between the habitats. The mathematical model has at most 13 possible equilibrium points, one of which is the point of origin, two are axial, tow are interior points and the others are boundary points. The model with , where n is the switching index, is discussed regarding the boundedness of its solutions and the local stability of its equilibrium points. In addition, a basin of attraction was created for the interior point. Finally, three numerical examples were given to support the theoretical results.
It is recognized that organisms live and interact in groups, exposing them to various elements like disease, fear, hunting cooperation, and others. As a result, in this paper, we adopted the construction of a mathematical model that describes the interaction of the prey with the predator when there is an infectious disease, as well as the predator community's characteristic of cooperation in hunting, which generates great fear in the prey community. Furthermore, the presence of an incubation period for the disease provides a delay in disease transmission from diseased predators to healthy predators. This research aims to examine the proposed mathematical model's solution behavior to better understand these elements' impact on an eco-epidemi
... Show MoreIn this paper, a mathematical model consisting of the prey- predator model with disease in both the population is proposed and analyzed. The existence, uniqueness and boundedness of the solution are discussed. The existences and the stability analysis of all possible equilibrium points are studied. Numerical simulation is carried out to investigate the global dynamical behavior of the system.