Bioinformatics is one of the computer science and biology sub-subjects concerned with the processes applied to biological data, such as gathering, processing, storing, and analyzing it. Biological data (ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and protein sequences) has many applications and uses in many fields (data security, data segmentation, feature extraction, etc.). DNA sequences are used in the cryptography field, using the properties of biomolecules as the carriers of the data. Messenger RNA (mRNA) is a single strand used to make proteins containing genetic information. The information recorded from DNA also carries messages from DNA to ribosomes in the cytosol. In this paper, a new encryption technique based on (mRNA) amino acids to increase the diffusion of the algorithm was proposed, also using the LUC algorithm with finite field arithmetic to increase the complexity of the algorithm. The results show high resistance against well-known attacks on the proposed method. For Entropy, the achieved value for the encrypted images was above 7.998. The range of peak signal to noise ratio (PSNR) between plain and encrypted images was below 8.7. Finally, the unified average change intensity (UACI) was close to 0.335. The number of changing pixel rates (NPCR) was close to 0.996, which is considered a good result.
Fractal image compression depends on representing an image using affine transformations. The main concern for researches in the discipline of fractal image compression (FIC) algorithm is to decrease encoding time needed to compress image data. The basic technique is that each portion of the image is similar to other portions of the same image. In this process, there are many models that were developed. The presence of fractals was initially noticed and handled using Iterated Function System (IFS); that is used for encoding images. In this paper, a review of fractal image compression is discussed with its variants along with other techniques. A summarized review of contributions is achieved to determine the fulfillment of fractal ima
... Show MoreIn this research work, a modified DCT descriptor are presented to mosaics the satellite images based on Abdul Kareem [1] similarity criterion are presented, new method which is proposed to speed up the mosaics process is presented. The results of applying the modified DCT descriptor are compared with the mosaics method using RMSE similarity criterion which prove that the modified DCT descriptor to be fast and accurate mosaics method.
A super pixel can be defined as a group of pixels, which have similar characteristics, which can be very helpful for image segmentation. It is generally color based segmentation as well as other features like texture, statistics…etc .There are many algorithms available to segment super pixels like Simple Linear Iterative Clustering (SLIC) super pixels and Density-Based Spatial Clustering of Application with Noise (DBSCAN). SLIC algorithm essentially relay on choosing N random or regular seeds points covering the used image for segmentation. In this paper Split and Merge algorithm was used instead to overcome determination the seed point's location and numbers as well as other used parameters. The overall results were better from the SL
... Show MoreHueckel edge detector study using binary step edge image is presented. The standard algorithm that Hueckel presented, in his paper without any alteration is adopted. This paper studies a fully analysis for the algorithm efficiency, time consuming and the expected results with slide window size and edge direction. An analysis for its behavior with the changing of the slide window size (disk size) is presented. The best result is acquired when the window size equals to four pixel.
Fractal image compression gives some desirable properties like fast decoding image, and very good rate-distortion curves, but suffers from a high encoding time. In fractal image compression a partitioning of the image into ranges is required. In this work, we introduced good partitioning process by means of merge approach, since some ranges are connected to the others. This paper presents a method to reduce the encoding time of this technique by reducing the number of range blocks based on the computing the statistical measures between them . Experimental results on standard images show that the proposed method yields minimize (decrease) the encoding time and remain the quality results passable visually.
One of the most important of satellite image is studying the surface water
according of its distribution and depth. In this work, three images have been taken
for Baghdad and surrounding for year (1991, 1999 and 2014) and by using of envi
program has been used. Different classes have been evaluated for Al-Habania and
Al-Razaza River according to its depth and water reflectance. In the present work
four types of water depth (very shallow, shallow, moderate, and deep area) have
been detected.
In this work, satellite images for Razaza Lake and the surrounding area
district in Karbala province are classified for years 1990,1999 and
2014 using two software programming (MATLAB 7.12 and ERDAS
imagine 2014). Proposed unsupervised and supervised method of
classification using MATLAB software have been used; these are
mean value and Singular Value Decomposition respectively. While
unsupervised (K-Means) and supervised (Maximum likelihood
Classifier) method are utilized using ERDAS imagine, in order to get
most accurate results and then compare these results of each method
and calculate the changes that taken place in years 1999 and 2014;
comparing with 1990. The results from classification indicated that
Gypseous soil is prevalent in arid and semi-arid areas, is from collapsible soil, which contains the mineral gypsum, and has variable properties, including moisture-induced volume changes and solubility. Construction on these soils necessitates meticulous assessment and unique designs due to the possibility of foundation damage from soil collapse. The stability and durability of structures situated on gypseous soils necessitate close collaboration with specialists and careful, methodical preparation. It had not been done to find the pattern of failure in the micromechanical behavior of gypseous sandy soil through particle image velocity (PIV) analysis. This adopted recently in geotech
When images are customized to identify changes that have occurred using techniques such as spectral signature, which can be used to extract features, they can be of great value. In this paper, it was proposed to use the spectral signature to extract information from satellite images and then classify them into four categories. Here it is based on a set of data from the Kaggle satellite imagery website that represents different categories such as clouds, deserts, water, and green areas. After preprocessing these images, the data is transformed into a spectral signature using the Fast Fourier Transform (FFT) algorithm. Then the data of each image is reduced by selecting the top 20 features and transforming them from a two-dimensiona
... Show More