In this article, we introduce a class of modules that is analogous of generalized extending modules. First we define a module M to be a generalized ECS if and only if for each ec-closed submodule A of M, there exists a direct summand D of M such that is singular, and then we locate generalized ECS between the other extending generalizations. After that we present some of characterizations of generalized ECS condition. Finally, we show that the direct sum of a generalized ECS need not be generalized ECS and deal with decompositions for be generalized ECS concept.
Let be a ring with identity and let be a left R-module. If is a proper submodule of and , is called --semi regular element in , If there exists a decoposition such that is projective submodule of and . The aim of this paper is to introduce properties of F-J-semi regular module. In particular, its characterizations are given. Furthermore, we introduce the concepts of Jacobson hollow semi regular module and --semiregular module. Finally, many results of Jacobson hollow semi regular module and --semiregular module are presented.
Truncated distributions arise naturally in many practical situations. It’s a conditional distribution that develops when the parent distribution's domain is constrained to a smaller area. The distribution of a right truncated is one of the types of a single truncated that is restricted within a specific field and usually occurs when the specified period for the study is complete. Hence, this paper introduces Right Truncated Inverse Generalized Rayleigh Distribution (RTIGRD) with two parameters is introduced. Then, provided some properties such as; (probability density function, cumulative distribution function (CDF), survival function, hazard function, rth moment, mean, variance, Moment Generating Function, Skewness, kurtosi
... Show MoreIn this work, Elzaki transform (ET) introduced by Tarig Elzaki is applied to solve linear Volterra fractional integro-differential equations (LVFIDE). The fractional derivative is considered in the Riemman-Liouville sense. The procedure is based on the application of (ET) to (LVFIDE) and using properties of (ET) and its inverse. Finally, some examples are solved to show that this is computationally efficient and accurate.
In this work, Elzaki transform (ET) introduced by Tarig Elzaki is applied to solve linear Volterra fractional integro-differential equations (LVFIDE). The fractional derivative is considered in the Riemman-Liouville sense. The procedure is based on the application of (ET) to (LVFIDE) and using properties of (ET) and its inverse. Finally, some examples are solved to show that this is computationally efficient and accurate.
The concept of the Extend Nearly Pseudo Quasi-2-Absorbing submodules was recently introduced by Omar A. Abdullah and Haibat K. Mohammadali in 2022, where he studies this concept and it is relationship to previous generalizationsm especially 2-Absorbing submodule and Quasi-2-Absorbing submodule, in addition to studying the most important Propositions, charactarizations and Examples. Now in this research, which is considered a continuation of the definition that was presented earlier, which is the Extend Nearly Pseudo Quasi-2-Absorbing submodules, we have completed the study of this concept in multiplication modules. And the relationship between the Extend Nearly Pseudo Quasi-2-Absorbing submodule and Extend Nearly Pseudo Quasi-2-Abs
... Show MoreThe purpose of this paper is to extend some results concerning generalized derivations to generalized semiderivations of 3-prime near rings.
In this work we discuss the concept of pure-maximal denoted by (Pr-maximal) submodules as a generalization to the type of R- maximal submodule, where a proper submodule of an R-module is called Pr- maximal if ,for any submodule of W is a pure submodule of W, We offer some properties of a Pr-maximal submodules, and we give Definition of the concept, near-maximal, a proper submodule
of an R-module is named near (N-maximal) whensoever is pure submodule of such that then K=.Al so we offer the concept Pr-module, An R-module W is named Pr-module, if every proper submodule of is Pr-maximal. A ring is named Pr-ring if whole proper ideal of is a Pr-maximal ideal, we offer the concept pure local (Pr-loc
... Show MoreLet M be an R-module, where R be a commutative;ring with identity. In this paper, we defined a new kind of submodules, namely; ET-coessential and ET-Coclosed submodules of M. Let T be a submodule of M. Let K H M, K is called ET-Coessential of H in M (K⊆ET.ce H), if . A submodule H is called ET- coclosed in M of H has no proper coessential submodule in M, we denote by (K⊆ET.cc H) , that is, K⊆ET.ce H implies that K = H. In our work, we introduce;some properties of ET-coessential and ET-coclosed submodules of M.