We presented in this paper a new class containing analytic univalent functions defined on unit disk. We obtained many geometric properties , like , coefficient inequality , distortion and growth theorems, convolution property, convex set, arithmetic mean and radius of starlikness and convexity by using Gaussian hypergeometric function for the class
In this paper, we define two operators of summation and summation-integral of q-type in two dimensional spaces. Firstly, we study the convergence of these operators and then we prove Voronovskaya- type asymptotic formulas for these operators.
Abstract:In this paper, some probability characteristics functions (moments, variances,convariance, and spectral density functions) are found depending upon the smallestvariance of the solution of some stochastic Fredholm integral equation contains as aknown function, the sine wave function
A method for Approximated evaluation of linear functional differential equations is described. where a function approximation as a linear combination of a set of orthogonal basis functions which are chebyshev functions .The coefficients of the approximation are determined by (least square and Galerkin’s) methods. The property of chebyshev polynomials leads to good results , which are demonstrated with examples.
This study aimed at the investigation of abnormal liver and renal functions by biochemical manifestations of underlying metabolic abnormalities in relation to hyperglycemia in non-insulin-dependent diabetic patients. The study comprised 118 diabetic patients (56 males, 62 females) and 60 age-matched healthy non-diabetic controls (30 males, 30 females). All subjects were tested for serum levels of liver enzymatic indicators, which include aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP), as well as non enzymatic parameters, including total bilirubin and total proteins.Also, serum levels of renal function markers, including microalbumin, creatinine, urea, and uric acid were measured.
The find
... Show MoreThis paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples
In this research, some probability characteristics functions (probability density, characteristic, correlation and spectral density) are derived depending upon the smallest variance of the exact solution of supposing stochastic non-linear Fredholm integral equation of the second kind found by Adomian decomposition method (A.D.M)
In this paper, we established a mathematical model of an SI1I2R epidemic disease with saturated incidence and general recovery functions of the first disease I1. Considering the basic reproduction number, we obtained conditions for both disease-free and co-existing cases. The equilibrium points local stability is verified by using the Routh-Hurwitz criterion, while for the global stability, we used a suitable Lyapunov function to analyze the endemic spread of the positive equilibrium point. Moreover, we carried out the local bifurcation around both equilibrium points (disease-free and co-existing), where we obtained that the disease-free equilibrium point undergoes a transcritical bifurcation. We conduct numerical simulations that suppo
... Show MoreIn this paper, a new class of harmonic univalent functions was defined by the differential operator. We obtained some geometric properties, such as the coefficient estimates, convex combination, extreme points, and convolution (Hadamard product), which are required