Setting-up a 3D geological model both from field and subsurface data is a typical task in geological studies involving natural resource evaluation and hazard assessment. In this study a 3D geological model for Mishrif Formation in Garraf oil field has been set-up using Petrel software. Mishrif Formation represents the most important reservoir in Garraf oil field. Four vertical oil wells (GA-4, GA-A1P, GA-3 and GA-5) and one directional well (GA-B8P) were selected in Garraf Oil Field in order to set-up structural and petrophysical (porosity and water saturation) models represented by a 3D static geological model in three dimensions. Structural model shows that Garraf oil field represents a domal structure that shows continuous growth as indicated by the structural maps at top of reservoir units. The structural closure is shifted from GA-3 well to GA-A1P well. Mishrif Formation was divided into ten zones (top Mishrif, M1, M1.2, M2, L1, L1.2, L2, L2.2, L2.3 and L2.4.). Petrophysical model (porosity and water saturation) for Mishrif Formation was set-up from values of porosity and water saturation using Sequential Gaussian Simulation algorithm. According to data analyses and the results from modeling the units (M1.2, L1 and L1.2) are considered as high quality reservoir units due to the high PHIE and low water saturation. Units (L2, L2.2, L2.3 and L2.4) are considered as poor reservoirs because of low PHIE and high water saturation, and non-reservoir units include (Top Mishrif, M1 and M2) therefore, they represent cap units. Cross sections of petrophysical model were conducted to illustrate the vertical and horizontal distribution of porosity and water saturation between wells in the field.
The study intends to well logs interpretation to determine the petrophysical parameters of Euphrates Formations in Ajeel Oil Field. The petrophysical properties have been determined from well logging, Euphrates Formation in terms of reservoirs units, consist of two Petrophysical properties. Total porosity, effect porosity and secondary porosity have been calculated from neutron, density, and sonic logs. secondary porosity is high and it's resulted from diagenesis processes in the formation. From RHOB-NPHI and N/M cross plot, Euphrates Formation composed mainly from Limestone and dolomite with nodules of anhydrite. Dhiban Formation composed mainly of anhydrite, so it's represented the cap rocks for Euphrates Reservoir were recognized base
... Show MoreThis paper contains studying of the Evaluation for the Petrophysical Properties of
Yamama Formation in Ratawi Field which occurs in about 70 km to the west of
Basrah city in Mesopotamia zone (Zubair subzone). The study includes a
petrophysical evaluation and (3 Dimensions) geological model for each unit
especially the three hydrocarbon units comprising the Yamama Formation in (5)
boreholes which are Rt-3, Rt-4, Rt-5, Rt-6 and Rt-7 distributed on the crest and
flanks of the Ratawi structure that are carried out in the present study. The
formation's boundaries were determined using well logs, available core intervals and
by Petrophysical data and it is found that it can be subdivided into three main
reservoir uni
The reserve estimation process is continuous during the life of the field due to risk and inaccuracy that are considered an endemic problem thereby must be studied. Furthermore, the truth and properly defined hydrocarbon content can be identified just only at the field depletion. As a result, reserve estimation challenge is a function of time and available data. Reserve estimation can be divided into five types: analogy, volumetric, decline curve analysis, material balance and reservoir simulation, each of them differs from another to the kind of data required. The choice of the suitable and appropriate method relies on reservoir maturity, heterogeneity in the reservoir and data acquisition required. In this research, three types of rese
... Show MorePetrophysical characterization is the most important stage in reservoir management. The main purpose of this study is to evaluate reservoir properties and lithological identification of Nahr Umar Formation in Nasiriya oil field. The available well logs are (sonic, density, neutron, gamma-ray, SP, and resistivity logs). The petrophysical parameters such as the volume of clay, porosity, permeability, water saturation, were computed and interpreted using IP4.4 software. The lithology prediction of Nahr Umar formation was carried out by sonic -density cross plot technique. Nahr Umar Formation was divided into five units based on well logs interpretation and petrophysical Analysis: Nu-1 to Nu-5. The formation lithology is mainly
... Show MoreThree seismic instantaneous attributes (phase, frequency, and variance) were utilized on 3D-seismic poststack migrated data, covering 617.31 km2, integrated with data of two wells (Du-1 and Du-2) in Dujaila oil field, southeast of Iraq. They gave good results in detecting reef buildups and confirmed the existence of the stratigraphic hydrocarbon trap that was not obvious in the conventional seismic amplitude sections. They display several seismic criteria in attribute sections for recognizing reef buildups and hydrocarbon accumulation, such as phase reversal, low frequency, and high amplitude variance. The seismic attributes emphasized that the stratigraphic trap of reef rudist buildups with hydrocarbon content is con
... Show MoreThe Mishrif Formation is one of the most important formation in oil fields, which is located in southern part of Iraq, and it is of Upper Cretaceous age. Tuba field is located nearly 40 km SW – Basrah city. It is bounded from east by Zubair oil field (5 km distance) and from west by Rumaila (2 km distance). The Tuba oil field is situated between Zubair oil field in the east and Rumaila in the west, and is separated by two depressions.
The rock (core and chips) samples have been collected systematically from cores of Mishrif Formation that are available from stores of southern oil company to prepare thin sections and slides—these slides have been examined by using microscope. These samples have been taken from all parts of the rese
The seismic method depends on the nature of the reflected waves from the interfaces between layers, which in turn depends on the density and velocity of the layer, and this is called acoustic impedance. The seismic sections of the East Abu-Amoud field that is located in Missan Province, south-eastern Iraq, were studied and interpreted for updating the structural picture of the major Mishrif Formation for the reservoir in the field. The Mishrif Formation is rich in petroleum in this area, with an area covering about 820 km2. The horizon was calibrated and defined on the seismic section with well logs data (well tops, check shot, sonic logs, and density logs) in the interp
... Show MoreThe study is an attempt to predict reservoir characterization by improving the estimation of petro-physical properties (porosity), through integration of wells information and 3D seismic data in early cretaceous carbonate reservoir Yamama Formation of (Abu-Amoud) field in southern part of Iraq. Seismic inversion (MBI) was used on post- stack 3 dimensions seismic data to estimate the values of P-acoustic impedance of which the distribution of porosity values was estimated through Yamama Formation in the study area. EMERGE module on the Hampson Russel software was applied to create a relationship between inverted seismic data and well data at well location to construct a perception about the distribution of porosity on the level of all uni
... Show MoreTwenty nine core samples were taken from Ratawi 7 Oil well according to the presence of oil in formation and availability of core samples. This well is located in the province of Basra/southern Iraq. The samples were collected from Yamama Formation. The core samples are taken from the well at different depths, ranging between (3663m-3676m). The range of Vp for these core samples is (668-4017 m/sec) and its average is (1779 m/sec), While the range of Vs is (291-1854 m/sec) and its average is (796 m/sec). In the current study the ultrasonic method is conducted to measure Vp, Vs as well as some petrophysical properties for core samples and some elastic moduli such as (Young's modulus, Bulk modulus, Shear modulus, Poisson's ratio and Lame's
... Show More