Preferred Language
Articles
/
ijs-7544
Comparing the Random Forest vs. Extreme Gradient Boosting using Cuckoo Search Optimizer for Detecting Arabic Cyberbullying
...Show More Authors

   Cyberbullying is one of the major electronic problems, and it is not a new phenomenon. It was present in the traditional form before the emergence of social networks, and cyberbullying has many consequences, including emotional and physiological states such as depression and anxiety. Given the prevalence of this phenomenon and the importance of the topic in society and its negative impact on all age groups, especially adolescents, this work aims to build a model that detects cyberbullying in the comments on social media (Twitter) written in the Arabic language using Extreme Gradient Boosting (XGBoost) and Random Forest methods in building the models. After a series of pre-processing, we found that the accuracy of classification of these comments was 0.861 in XGBoost, and 0.849 in Random Forest. Then the results of this model were improved by using one of the optimization algorithms called cuckoo search to adjust the parameters in two methods. The results are improved clearly in the random forest method, which obtained results similar to the extreme gradient boosting method, with a value of 0.867.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
Human recognition by utilizing voice recognition and visual recognition
...Show More Authors

Audio-visual detection and recognition system is thought to become the most promising methods for many applications includes surveillance, speech recognition, eavesdropping devices, intelligence operations, etc. In the recent field of human recognition, the majority of the research be- coming performed presently is focused on the reidentification of various body images taken by several cameras or its focuses on recognized audio-only. However, in some cases these traditional methods can- not be useful when used alone such as in indoor surveillance systems, that are installed close to the ceiling and capture images right from above in a downwards direction and in some cases people don't look straight the cameras or it cannot be added in some

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Self-Localization of Guide Robots Through Image Classification
...Show More Authors

The field of autonomous robotic systems has advanced tremendously in the last few years, allowing them to perform complicated tasks in various contexts. One of the most important and useful applications of guide robots is the support of the blind. The successful implementation of this study requires a more accurate and powerful self-localization system for guide robots in indoor environments. This paper proposes a self-localization system for guide robots.  To successfully implement this study, images were collected from the perspective of a robot inside a room, and a deep learning system such as a convolutional neural network (CNN) was used. An image-based self-localization guide robot image-classification system delivers a more accura

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Reinforcement Learning-Based Television White Space Database
...Show More Authors

Television white spaces (TVWSs) refer to the unused part of the spectrum under the very high frequency (VHF) and ultra-high frequency (UHF) bands. TVWS are frequencies under licenced primary users (PUs) that are not being used and are available for secondary users (SUs). There are several ways of implementing TVWS in communications, one of which is the use of TVWS database (TVWSDB). The primary purpose of TVWSDB is to protect PUs from interference with SUs. There are several geolocation databases available for this purpose. However, it is unclear if those databases have the prediction feature that gives TVWSDB the capability of decreasing the number of inquiries from SUs. With this in mind, the authors present a reinforcement learning-ba

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Sun Jul 31 2022
Journal Name
Iraqi Journal Of Science
Deep Learning and Machine Learning via a Genetic Algorithm to Classify Breast Cancer DNA Data
...Show More Authors

       This paper uses Artificial Intelligence (AI) based algorithm analysis to classify breast cancer Deoxyribonucleic (DNA). Main idea is to focus on application of machine and deep learning techniques. Furthermore, a genetic algorithm is used to diagnose gene expression to reduce the number of misclassified cancers. After patients' genetic data are entered, processing operations that require filling the missing values using different techniques are used. The best data for the classification process are chosen by combining each technique using the genetic algorithm and comparing them  in terms of accuracy.

View Publication Preview PDF
Scopus (13)
Crossref (4)
Scopus Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Impact of Twitter Sentiment Related to Bitcoin on Stock Price Returns
...Show More Authors

Twitter is becoming an increasingly popular platform used by financial analysts to monitor and forecast financial markets. In this paper we investigate the impact of the sentiments expressed in Twitter on the subsequent market movement, specifically the bitcoin exchange rate. This study is divided into two phases, the first phase is sentiment analysis, and the second phase is correlation and regression. We analyzed tweets associated with the Bitcoin in order to determine if the user’s sentiment contained within those tweets reflects the exchange rate of the currency. The sentiment of users over a 2-month period is classified as having a positive or negative sentiment of the digital currency using the proposed CNN-LSTM

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sun Dec 01 2024
Journal Name
Journal Of The College Of Basic Education
Efficiency of SCL Via Google Classroom on Female Pre-service Teachers' Teaching Readiness
...Show More Authors

This study intends to examine the efficiency of student-centered learning (SCL) through Google classroom in enhancing the readiness of fourth stage females’ pre-service teachers. The research employs a quasi-experimental design with a control and experimental group to compare the teaching readiness of participants before and after the intervention. The participants were 30 of fourth stage students at the University of Baghdad - College of Education for Women/the department of English and data were collected through observation checklist to assess their teaching experience and questionnaires to assess their perceptions towards using Google Classroom. Two sections were selected, C as a control group and D as the experimental one each with (

... Show More
Preview PDF
Publication Date
Mon Sep 20 2021
Journal Name
Key Engineering Materials
Effect of Partial Substitution of Sr by Ba on the Structural Properties of Tl<sub>0.8</sub>Ni<sub>0.2</sub>Sr<sub>2-x</sub>Br<sub>x</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>9-δ</sub> System
...Show More Authors

In this manuscript, the effect of substituting strontium with barium on the structural properties of Tl0.8Ni0.2Sr2-xBrxCa2Cu3O9-δcompound with x= 0, 0.2, 0.4, have been studied. Samples were prepared using solid state reaction technique, suitable oxides alternatives of Pb2O3, CaO, BaO and CuO with 99.99% purity as raw materials and then mixed. They were prepared in the form of discs with a diameter of 1.5 cm and a thickness of (0.2-0.3) cm under pressures 7 tons / cm2, and the samples were sintered at a constant temperature o

... Show More
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Fri May 01 2020
Journal Name
International Journal Of Advanced Science And Technology
Improved Merging Multi Convolutional Neural Networks Framework of Image Indexing and Retrieval
...Show More Authors

Background/Objectives: The purpose of current research aims to a modified image representation framework for Content-Based Image Retrieval (CBIR) through gray scale input image, Zernike Moments (ZMs) properties, Local Binary Pattern (LBP), Y Color Space, Slantlet Transform (SLT), and Discrete Wavelet Transform (DWT). Methods/Statistical analysis: This study surveyed and analysed three standard datasets WANG V1.0, WANG V2.0, and Caltech 101. The features an image of objects in this sets that belong to 101 classes-with approximately 40-800 images for every category. The suggested infrastructure within the study seeks to present a description and operationalization of the CBIR system through automated attribute extraction system premised on CN

... Show More
Publication Date
Sat Mar 28 2020
Journal Name
Iraqi Journal Of Science
Effect of levels in Dual Tree Complex Wavelet Transform when design Universal image stego-analytic
...Show More Authors

Universal image stego-analytic has become an important issue due to the natural images features curse of dimensionality. Deep neural networks, especially deep convolution networks, have been widely used for the problem of universal image stegoanalytic design. This paper describes the effect of selecting suitable value for number of levels during image pre-processing with Dual Tree Complex Wavelet Transform. This value may significantly affect the detection accuracy which is obtained to evaluate the performance of the proposed system. The proposed system is evaluated using three content-adaptive methods, named Highly Undetetable steGO (HUGO), Wavelet Obtained Weights (WOW) and UNIversal WAvelet Relative Distortion (UNIWARD).
The obtain

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
Performance Improvement of Generative Adversarial Networks to Generate Digital Color Images of Skin Diseases
...Show More Authors

     The main task of creating new digital images of different skin diseases is to increase the resolution of the specific textures and colors of each skin disease. In this paper, the performance of generative adversarial networks has been optimized to generate multicolor and histological color digital images of a variety of skin diseases (melanoma, birthmarks, and basal cell carcinomas). Two architectures for generative adversarial networks were built using two models: the first is a model for generating new images of dermatology through training processes, and the second is a discrimination model whose main task is to identify the generated digital images as either real or fake. The gray wolf swarm algorithm and the whale swarm alg

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref