Cyberbullying is one of the major electronic problems, and it is not a new phenomenon. It was present in the traditional form before the emergence of social networks, and cyberbullying has many consequences, including emotional and physiological states such as depression and anxiety. Given the prevalence of this phenomenon and the importance of the topic in society and its negative impact on all age groups, especially adolescents, this work aims to build a model that detects cyberbullying in the comments on social media (Twitter) written in the Arabic language using Extreme Gradient Boosting (XGBoost) and Random Forest methods in building the models. After a series of pre-processing, we found that the accuracy of classification of these comments was 0.861 in XGBoost, and 0.849 in Random Forest. Then the results of this model were improved by using one of the optimization algorithms called cuckoo search to adjust the parameters in two methods. The results are improved clearly in the random forest method, which obtained results similar to the extreme gradient boosting method, with a value of 0.867.
We have studied Bayesian method in this paper by using the modified exponential growth model, where this model is more using to represent the growth phenomena. We focus on three of prior functions (Informative, Natural Conjugate, and the function that depends on previous experiments) to use it in the Bayesian method. Where almost of observations for the growth phenomena are depended on one another, which in turn leads to a correlation between those observations, which calls to treat such this problem, called Autocorrelation, and to verified this has been used Bayesian method.
The goal of this study is to knowledge the effect of Autocorrelation on the estimation by using Bayesian method. F
... Show MoreProblem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreOsteoarthritis (OA) is a disease of human joints, especially the knee joint, due to significant weight of the body. This disease leads to rupture and degeneration of parts of the cartilage in the knee joint, which causes severe pain. Diagnosis of this disease can be obtained through X-ray. Deep learning has become a popular solution to medical issues due to its fast progress in recent years. This research aims to design and build a classification system to minimize the burden on doctors and help radiologists to assess the severity of the pain, enable them to make an optimal diagnosis and describe the correct treatment. Deep learning-based approaches, such as Convolution Neural Networks (CNNs), have been used to detect knee OA usin
... Show MoreThe adopted method in the teaching of history is conservation and indoctrination in all grades, and this will lead to a lack of students interact with teachers in the course of the lesson, and poor use of teachers to questions that raise students' thinking during the lesson, which leads to a lack of interest in the topic of the lesson and wasting opportunities contribution making it the teacher at the center of the educational process, and to provide arrogating the researcher to contribute to teaching style with the belief that the use of this method of teaching could lead to overcome the difficulties and problems faced by the teaching material.
And there are educational complexes integrated approac
... Show MoreABSTRUCT
In This Paper, some semi- parametric spatial models were estimated, these models are, the semi – parametric spatial error model (SPSEM), which suffer from the problem of spatial errors dependence, and the semi – parametric spatial auto regressive model (SPSAR). Where the method of maximum likelihood was used in estimating the parameter of spatial error ( λ ) in the model (SPSEM), estimated the parameter of spatial dependence ( ρ ) in the model ( SPSAR ), and using the non-parametric method in estimating the smoothing function m(x) for these two models, these non-parametric methods are; the local linear estimator (LLE) which require finding the smoo
... Show MoreThe aim of the research is to study the comparison between (ARIMA) Auto Regressive Integrated Moving Average and(ANNs) Artificial Neural Networks models and to select the best one for prediction the monthly relative humidity values depending upon the standard errors between estimated and observe values . It has been noted that both can be used for estimation and the best on among is (ANNs) as the values (MAE,RMSE, R2) is )0.036816,0.0466,0.91) respectively for the best formula for model (ARIMA) (6,0,2)(6,0,1) whereas the values of estimates relative to model (ANNs) for the best formula (5,5,1) is (0.0109, 0.0139 ,0.991) respectively. so that model (ANNs) is superior than (ARIMA) in a such evaluation.
In this work, we prove that the triple linear partial differential equations (PDEs) of elliptic type (TLEPDEs) with a given classical continuous boundary control vector (CCBCVr) has a unique "state" solution vector (SSV) by utilizing the Galerkin's method (GME). Also, we prove the existence of a classical continuous boundary optimal control vector (CCBOCVr) ruled by the TLEPDEs. We study the existence solution for the triple adjoint equations (TAJEs) related with the triple state equations (TSEs). The Fréchet derivative (FDe) for the objective function is derived. At the end we prove the necessary "conditions" theorem (NCTh) for optimality for the problem.
This study aims to recognize the most common thinking styles and level of the need for cognitive university students , the relation between thinking styles and the need for cognitive, and there are differences according to gender .The sample consists of (250) males and females university students for the academic year (2013-2014), and the researcher uses two scales;" thinking styles scale (Harison &Bramson, 1986), and the need for cognitive scale" (Cacioppo, Petty & Kao , 1996).
The results show that there is difference in the range of the prevalence of the thinking styles among university students , the scientific thinking style is the most common , the students have got the arrange level of the need for cognitive , and there
The developing countries, like our country Iraq suffer from deep comprehensive structural crisis, manifestations and a clear imbalance between the demand and the supply sides. The overall imbalance in the external balance. As a consequence, this caused the accumulation of foreign debts or failure in the implementation of economic development programs. The countries which are forced to resort to the International Monitoring Funds, and the World Bank for assistance and to express an opinion on policies that include restrictions controls that belong to the monetary, and fiscal side group, imposed on the economies crisis, as a condition for returning to normal which called reform programs. The organize of the events of radical changes in the
... Show MoreThe modern business environment Witness tremendous.These developments result from globalization of markets and economic and technological openness. Those developments resulting a heightened competition between economic units and higher the costs of their products and lower their functional characteristics. They do not take into account the response to the requirements of customers. This matter commit it to search for scientific methods to help it to cope with the happening changes and improve its competitive position, The current study acquired its importance by providing significance through by applicable integrated framework to reduce the costs of products. This reduction should be without compromising their quality by using the integr
... Show More