Preferred Language
Articles
/
ijs-7514
Improve The Fully Convolutional Network Accuracy by Levelset and The Deep Prior Method
...Show More Authors

     Deep learning techniques allow us to achieve image segmentation with excellent accuracy and speed. However, challenges in several image classification areas, including medical imaging and materials science, are usually complicated as these complex models may have difficulty learning significant image features that would allow extension to newer datasets. In this study, an enhancing technique for object detection is proposed based on deep conventional neural networks by combining levelset and standard shape mask. First, a standard shape mask is created through the "probability" shape using the global transformation technique, then the image, the mask, and the probability map are used as the levelset input to apply the image segmentation. The test results show that when using the proposed method with DCNN, it can achieve a close segmentation area and extract features with higher detail than traditional segmentation. The proposed model achieved 94.43% in precision and 95.91% in recall %, so it got 95.16% in F1-score. When comparing the proposed model with the same CNN model without Levelset, the result shows that the proposed model achieved accuracy of 0.951, which is higher than CNN model without Levelset that achieved 0.902.

Scopus Crossref
View Publication
Publication Date
Thu Jun 30 2022
Journal Name
Iraqi Journal Of Science
Brain MR Images Classification for Alzheimer’s Disease
...Show More Authors

    Alzheimer’s Disease (AD) is the most prevailing type of dementia. The prevalence of AD is estimated to be around 5% after 65 years old and is staggering 30% for more than 85 years old in developed countries. AD destroys brain cells causing people to lose their memory, mental functions and ability to continue daily activities. The findings of this study are likely to aid specialists in their decision-making process by using patients’ Magnetic Resonance Imaging (MRI) to distinguish patients with AD from Normal Control (NC). Performance evolution was applied to 346 Magnetic Resonance images from the Alzheimer's Neuroimaging Initiative (ADNI) collection. The Deep Belief Network (DBN) classifier was used to fulfill classification f

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Sentiment Analysis on Roman Urdu Students’ Feedback Using Enhanced Word Embedding Technique
...Show More Authors

 

Students’ feedback is crucial for educational institutions to assess the performance of their teachers, most opinions are expressed in their native language, especially for people in south Asian regions. In Pakistan, people use Roman Urdu to express their reviews, and this applied in the education domain where students used Roman Urdu to express their feedback. It is very time-consuming and labor-intensive process to handle qualitative opinions manually. Additionally, it can be difficult to determine sentence semantics in a text that is written in a colloquial style like Roman Urdu. This study proposes an enhanced word embedding technique and investigates the neural word Embedding (Word2Vec and Glove) to determine which perfo

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Journal Of Economics And Administrative Sciences
التطورات العالمية وانعكاساتها على تنافسية الصناعة في العراق دولياً - بحث نظري
...Show More Authors

خلال الربع الأخير من القرن العشرين ، شهد الاقتصاد العالمي تحولا في مختلف المجالات التجارية والتكنولوجية والمالية التي غيرت هيكلها وأنتجت وضعا جديدا يتمثل بشكل رئيس في زيادة حركة رأس المال الأجنبي والتوسع السريع للإنتاج الدولي والتجارة بالإضافة إلى التطور التكنولوجي الهائل ونقل التكنولوجيا ، مما أدى إلى هوس الدول بالمنافسة على المستوى العالمي والسعي لدخول الأسواق الدولية وتحسين قدرتها التنافسية. وت

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 28 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
Intelligent System for Parasitized Malaria Infection Detection Using Local Descriptors
...Show More Authors

Malaria is a curative disease, with therapeutics available for patients, such as drugs that can prevent future malaria infections in countries vulnerable to malaria. Though, there is no effective malaria vaccine until now, although it is an interesting research area in medicine. Local descriptors of blood smear image are exploited in this paper to solve parasitized malaria infection detection problem. Swarm intelligence is used to separate the red blood cells from the background of the blood slide image in adaptive manner. After that, the effective corner points are detected and localized using Harris corner detection method. Two types of local descriptors are generated from the local regions of the effective corners which are Gabor based f

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Apr 22 2018
Journal Name
Acs Biomaterials Science & Engineering
Engineered coatings for titanium implants to present ultra-low doses of BMP-7
...Show More Authors

The ongoing research to improve the clinical outcome of titanium implants has resulted in the implementation of multiple approaches to deliver osteogenic growth factors accelerating and sustaining osseointegration. Here we show the presentation of human bone morphogenetic protein 7 (BMP-7) adsorbed to titanium discs coated with poly(ethyl acrylate) (PEA). We have previously shown that PEA promotes fibronectin organization into nanonetworks exposing integrin- and growth-factor-binding domains, allowing a synergistic interaction at the integrin/growth factor receptor level. Here, titanium discs were coated with PEA and fibronectin and then decorated with ng/mL doses of BMP-7. Human mesenchymal stem cells were used to investigate cellular resp

... Show More
View Publication Preview PDF
Scopus (43)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Tue Jan 12 2016
Journal Name
Wireless Networks
Low communication cost (LCC) scheme for localizing mobile wireless sensor networks
...Show More Authors

In recent years, the number of applications utilizing mobile wireless sensor networks (WSNs) has increased, with the intent of localization for the purposes of monitoring and obtaining data from hazardous areas. Location of the event is very critical in WSN, as sensing data is almost meaningless without the location information. In this paper, two Monte Carlo based localization schemes termed MCL and MSL* are studied. MCL obtains its location through anchor nodes whereas MSL* uses both anchor nodes and normal nodes. The use of normal nodes would increase accuracy and reduce dependency on anchor nodes, but increases communication costs. For this reason, we introduce a new approach called low communication cost schemes to reduce communication

... Show More
View Publication
Scopus (34)
Crossref (26)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Journal Of Engineering And Sustainable Development
Improving Performance Classification in Wireless Body Area Sensor Networks Based on Machine Learning Techniques
...Show More Authors

Wireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two s

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Dec 13 2017
Journal Name
Al-khwarizmi Engineering Journal
Design of a Kinematic Neural Controller for Mobile Robots based on Enhanced Hybrid Firefly-Artificial Bee Colony Algorithm
...Show More Authors

The paper present design of a control structure that enables integration of a Kinematic neural controller for trajectory tracking of a nonholonomic differential two wheeled mobile robot, then  proposes a Kinematic neural controller to direct a National Instrument mobile robot (NI Mobile Robot). The controller is to make the actual velocity of the wheeled mobile robot close the required velocity by guarantees that the trajectory tracking mean squire error converges at minimum tracking error. The proposed tracking control system consists of two layers; The first layer is a multi-layer perceptron neural network system that controls the mobile robot to track the required path , The second layer is an optimization layer ,which is impleme

... Show More
View Publication Preview PDF
Publication Date
Wed Oct 15 2014
Journal Name
International Journal Of Advanced Research
A survey/ Development of Passive Optical Access Networks Technologies
...Show More Authors

The bandwidth requirements of telecommunication network users increased rapidly during the last decades. Optical access technologies must provide the bandwidth demand for each user. The passive optical access networks (PONs) support a maximum data rate of 100 Gbps by using the Orthogonal Frequency Division Multiplexing (OFDM) technique in the optical access network. In this paper, the optical broadband access networks with many techniques from Time Division Multiplexing Passive Optical Networks (TDM PON) to Orthogonal Frequency Division Multiplex Passive Optical Networks (OFDM PON) are presented. The architectures, advantages, disadvantages, and main parameters of these optical access networks are discussed and reported which have many ad

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 30 2020
Journal Name
Iraqi Journal Of Science
A Comparison of Different Estimation Methods to Handle Missing Data in Explanatory Variables
...Show More Authors

Missing data is one of the problems that may occur in regression models. This problem is usually handled by deletion mechanism available in statistical software. This method reduces statistical inference values because deletion affects sample size. In this paper, Expectation Maximization algorithm (EM), Multicycle-Expectation-Conditional Maximization algorithm (MC-ECM), Expectation-Conditional Maximization Either (ECME), and Recurrent Neural Networks (RNN) are used to estimate multiple regression models when explanatory variables have some missing values. Experimental dataset were generated using Visual Basic programming language with missing values of explanatory variables according to a missing mechanism at random general pattern and s

... Show More
View Publication Preview PDF
Scopus Crossref