In the present work, several new cyclic imides (succinimides) linked to benzothiazole or thiazole moieties through phenyl azo group were synthesized. Synthesis of the new imides was performed via multistep synthesis. The first step involved reaction of equimolar amounts of succinic anhydride and p-toluidine producing N-(4-tolyl) succinamic acid (1) which was dehydrated in the second step via treatment with acetic anhydride and anhydrous sodium acetate affording N-(4-tolyl)succinimide (2).
In the third step, substituted-2-aminobenzothiazoles were introduced in diazotization reaction with nitrous acid producing the corresponding diazonium salts and these inturn were introduced directly in coupling reaction with compound (2) affording the target cyclic imides (3-7). Structures of the new compounds were confirmed by depending on FTIR spectral data and (1HNMR and13CNMR) spectra for some of them which were in good agreement with the proposed ones.
A variety of liquid crystals comprising heterocyclics 1,3,4-oxadiazol ring [III], aminooxazol [IV]a, and aminothiazol [IV]b were synthesized through a number of steps, beginning of the reaction of 3, 3'- dimethyl - [1, 1'-biphenyl] -4, 4'- diamin, ethyl monochloroacetate and sodium acetate to synthesize diacetate compound[I]. The diester reacted with hydrazine hydrate(N2H4-H2O) to give dihydrazide compound [II], then reacted with Pyruvic acid and phosphorous oxychloride to produce diketone compound [III]. The last compound was reacted with urea and thiourea to give aminooxazol and aminothiazol respectively. The synthesized compounds actually characterized and determined the structures by melting points, FT-IR and 1H-NMR spectroscopies. By u
... Show MoreHeterocyclic polymers / silica nanocomposite one of important materials because of excellent properties such as thermal , electrical , and mechanical properties , so that hybrid nanomaterial are widely used in many fields, in this paper nanocomposite had prepared by modification of silica nanoparticals by using acrylic acid and functionalized the surface of nanoparticles, and using free Radical polymerization by AIBN as initiators and anhydrous toluene as solvent to polymerize functionalize silica nanoparticles with heterocyclic monomers to prepare heterocylic polymers / silica nanocomposite and study electrical conductivity , The nanocomposite which had prepared characterized by many analysis technique to study thermal properties such
... Show MoreNew Schiff bases derived from D-galactose were synthesized by condensation of aldehyde (1,2:3,4-Di-O-isopropylidene-6-carboxaldehyde-α-D-galactopyranose) with different aromatic amines such as (4-bromo, 3-hydroxy, 4-iodo, 4-methoxy) aniline in dry benzene using glacial acetic acid as a catalyst. These compounds were converted to oxazepine derivatives by addition reaction with maleic anhydride in dry benzene as a solvent. The structures of the synthesized compounds have been characterized by elemental analysis, FTIR spectra, some of them by using 1HNMR spectra and measurement of its physical properties.
Many new heterocyclic compounds including 4-thiazolidinones containing indole with triazole units were described. The new Schiff bases [VII] a, b and [VIII] a, b synthesized by condensation acid hydrazides [II],[VI] with different (aromatic) aldehydes in absolute ethanol. The refluxing equimolar amounts of the Schiff bases ([VII] a, b,[VIII] a, b) with thioglycolic acid in benzene led to get thiazolidin-4-ones derivatives ([IX] a, b and [X] ad). Finally, the new derivatives [XI] ac run out via the reacted compound [IX] a with different n-alkyl bromide (methyl bromide, ethyl bromide, and butyl bromide)
Many new heterocyclic compounds including 4-thiazolidinones containing indole with triazole units were described. The new Schiff bases [VII]a, b and [VIII]a,b synthesized by condensation acid hydrazides [II],[VI] with different (aromatic) aldehydes in absolute ethanol. The refluxing equimolar amounts of the Schiff bases ([VII]a,b, [VIII]a,b) with thioglycolic acid in benzene led to get thiazolidin-4-ones derivatives ([IX]a,b and [X]a-d). Finally, the new derivatives [XI]a-c run out via the reacted compound [IX]a with di
Three new hydrazone derivatives of Etodolac were synthesized and evaluated for their anti-inflammatory activity by using egg white induced paw edema method. All the synthesized target compounds were characterized by CHN- microanalysis, FT-IR spectroscopy, and 1HNMR analysis. The synthesis of the target (P1-P3) compounds was accomplished following multistep reaction procedures. The synthesized target compounds were found to be active in reducing paw edema thickness and their anti-inflammatory effect was comparable to that of the standard (Etodolac).
The present work involved preparation of new hetro cyclic polyacrylamides (1-9) using reaction of polyacryloyl chloride with 2-aminobenzothiazole which prepeard by thiocyanogen method in the presence of a suitable solvent and amount tri ethyl amine (Et3N) with heating. The structure confirmation of polymers were proved using FT-IR,1H-NMR,C13NMR and UV spectroscopy.Other physical properties including softening and melting points, and solubility of the polymers were also measured.
Coupling reaction of 2-amino benzoic acid with the 8-hydroxy quinoline gave the azo ligand (H2L): 5-(2-benzoic acid azo )-8-hydroxy quinoline.Treatment of this ligand with some metal ions (CoII, NiII and CuII ) in ethanolic medium with a (1:2) (M:L) ratio yielded a series of neutral complexes with general Formula[M(HL)2],where: M=Co(II), Ni(II) and Cu(II), HL=anion azo ligand (-1).The prepared complexes were characterized using flame atomic absorption,FT-IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements.
This study describes the preparation of new series of tetra-dentate N2O2 dinuclear complexes (Cr3+, Co2+, Cu2+) of the Schiff base derived from condensation of 1-Hydroxy-naphthalene-2-carbaldehyde with 2-amino-5-(2-hydroxy-phenyl)-1,3,4-thiadiazole. The structures of the ligands were identified using IR, UV-Vis , mass, elemental analysis and 1H-NMR techniques. All prepared complexes have been characterized by conductance measurement, magnetic susceptibility, electronic spectra, infrared spectrum, theromgravimatric analysis (TGA) and metal analysis by atomic absorption. From stoichiometry of metal to ligand and all measurements show a octahedral geometry proposed for all complexes of the (Cr3+, Co2+, Cu2+). conductivity measurement shows t
... Show More