In the present work, several new cyclic imides (succinimides) linked to benzothiazole or thiazole moieties through phenyl azo group were synthesized. Synthesis of the new imides was performed via multistep synthesis. The first step involved reaction of equimolar amounts of succinic anhydride and p-toluidine producing N-(4-tolyl) succinamic acid (1) which was dehydrated in the second step via treatment with acetic anhydride and anhydrous sodium acetate affording N-(4-tolyl)succinimide (2).
In the third step, substituted-2-aminobenzothiazoles were introduced in diazotization reaction with nitrous acid producing the corresponding diazonium salts and these inturn were introduced directly in coupling reaction with compound (2) affording the target cyclic imides (3-7). Structures of the new compounds were confirmed by depending on FTIR spectral data and (1HNMR and13CNMR) spectra for some of them which were in good agreement with the proposed ones.
This paper deals with the preparation of new monomers and polymers which including heterocyclic unit. The diacid chlorides compounds [1-3] were prepared from the reaction of glutaric acid, adipic acid, terephthalic acid with thionyl chloride. Succinic acid reacted with ethanol to produce compound [4]. Compound [4] reacted with hydrazine hydrate to obtain succinic hydrazide [5].Compound [5] reaction with CS2 and KOH in absolute ethanol to produce compound [6].The polymers [7-12] have been created by reacting diacid chlorides compounds [1-3] with compound[5] or [6] in dry pyridine with some drops of DMF. The topology of produced compounds has characterized through their spectral and analytical data as in FT-IR spectra, Thermal analysis [DSC,
... Show MoreThe synthesis and characterization of new complexes of Cr(III), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with bidentate [L1: 2-phenyl-2-(p-tolylamino) acetonitrile] and [L2: 2-phenyl-2-(phenylamino) acetonitrile] ligands has been described. The two ligands were prepared by the reaction of p-toluidine and aniline with benzaldehyde, respectively in the presence of potassium cyanide and acidic medium. The complexes were synthesized by treating an ethanolic solution of the ligand with metal salts in a mole ratio of [1:2] [M:L]. The complexes were characterized by using metal and elemental analyses, electronic spectra, 1H-NMR, 13C-NMR, Thermal Gravimetric Analysis TGA, molar conductivity and magnetic susceptibility. According to the obtaine
... Show MoreA new derivatives of Schiff bases connected with 5H-thiazolo[3,4-b][1,3,4]thiadiazole ring 5a-c were prepared via many reactions starting by treating 1,4-phenylene diamine 1 with chloroacetylchloride to prepared compound 2, then reaction with p-hydroxybenzaldehyde to synthesize compound 3 then, this was reacted with thioglycolic acid and thiosemicarazide to giveN,N-(1.4-phenylene)bis(2-(4-(2-amino-5Hthiazolo[4,3-b][1,3,4]thiadiazol-5-yl)phenoxy)acetamide) 4. Compound 4 was treated with different aromatic aldehydes to give a new derivatives of Schiff bases containing 5H-thiazolo[3,4-b][1,3,4]thiadiazole ring 5a-c. The synthesized compounds were characterized using FTIR spectrophotometer and 1H NMR spectroscopy and the biological activity of
... Show MoreIn this research, Schiff bases derived from the reaction of anthrone with different heterocyclic amines have been described. The resulted Schiff base compounds were reacted with various nucleophiles in order to obtain new heterocyclic derivatives. Chemical structures of all products were confirmed by IR, 1H-, 13C-NMR spectral data and elemental analysis. All synthesized compounds were in vitro tested against a standard strain of pathogenic microorganism including Gram +ve bacteria (Staphylococcus aureus), Gram –ve bacteria (Escherichia coli), and fungi (Candida albicans).
A
A new series of bases of Schiff (H2-H4) derived from phthalic anhydrideweresynthesized. These Schiff bases were prepared by the reaction of different amines (tyrosine methyl ester, phenylalanine methyl ester, and isoniazid) with the phthalimide derived aldehyde with the aid of glacial acetic acid or triethylamine ascatalysts. All the synthesized compounds were characterized by (FT-IR and 1HNMR) analyses and were in vitro evaluated for their antimicrobial activity against six various kinds of microorganisms. All the synthesized compounds had been screened for their antimicrobial activity against two Gram-positive bacteria “Staph. Aureus, and Bacillus subtilis
... Show MoreBackground: The isatin molecule is present in many natural substances, including plants and animals, and is used to prepare compounds with various biological activities. Objectives: To synthesize a new series of isatin derivatives with the expectation that they will have antimicrobial activity. Methods: Thiazole Schiff bases were synthesized from various Mannich bases of isatin to evaluate their antimicrobial properties. Initially, Mannich bases (2a–e) were synthesized by reacting isatin with formaldehyde and different secondary amines. Subsequently, they were treated with 2-aminothiazole to yield the final compounds (3a–e). Spectroscopic characterization was done via FT-IR and 1H-NMR. The antimicrobial screening was conducted o
... Show MoreEleven new 2,6-di-tert-butyl-4-(5-aryl-1,3,4-oxadiazol-2-yl)phenols 5a–k were synthesized by reacting aryl hydrazides with 3,5-di-tert butyl 4-hydroxybenzoic acid in the presence of phosphorus oxychloride. The resulting compounds were characterized based on their IR, 1H-NMR, 13C-NMR, and HRMS data. 2,2-Diphenyl-1-picrylhydrazide (DPPH) and ferric reducing antioxidant power (FRAP) assays were used to test the antioxidant properties of the compounds. Compounds 5f and 5j exhibited significant free-radical scavenging ability in both assays.
Three azo compounds were synthesized in two different methods, and characterized by FT-IR, HNMR andVis) spectra, melting points were determined. The inhibitory effects of prepared compounds on the activity of human serum cholinesterase have been studied in vitro. Different concentrations of study the type of inhibition. The results form line weaver-Burk plot indicated that the inhibitor type was noncompetitive with a range (33.12-78.99%).
The Ligand 2-(4-nitrophenyl azo)-2,4-dimethylphenol derived from 4-nitroaniline and 2,4-dimethylphenol was synthesized. The prepared ligand was identified by FT-IR and UV-Vis spectroscopic techniques. Treatment of the ligand with the following metal ions ( CuII , ZnII ,CdII and HgII) in aqueous ethanol with a 1:2 M:L ratio. Characterization of these compounds has been done on the basis of FT-IR and UV-Vis, as well as magnetic susceptibility and conductivity measurements. On the basis of physicochemical data tetrahedral geometries were assigned for the complexes.