Biological image edge detection preserving the important structural properties in an image. Detecting accurate edges are very important for analyzing the basic properties associated with a biological image. Gradient operator plays very important role in edge detection. In this paper the images had been using are color biological images taken from microbiology laboratory at the biological department college of science Al-MustansiriyhUniversity and the effect of gradient operation have applied on around 10 different biological color images but view only two. In our proposed approach comparative of various gradient of biological image include (gradient of image, gradient of image using first order derivative edge detection (Soble,Prewitt,Roberts)and gradient image using morphological operation and The comparative output images using quality assessment include (MSR, PNSR, l2rat, maxerr, entropy). The software tool that has been used is MATLAB 7.0 from the results we found that morphological and Robert gradient edge detection algorithm better performs than the others and are important with extraction features of biologic images.
Support vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca
... Show MoreElection study included four sites for the waters in area of Youssifiyah south of Baghdad (river water, tank water, liquefactions water, and water filtrate and seethed and purifier by alum and chloride), the samples were collected during the month of June in 2007. Temperature, electrical conductivity and acidity are measured. Also , the concentration of chloride , sulphate , carbonate , nitrate , sodium , calcium , magnesium , hard total and total dissolved substances are determined , as well as heavy metals assess environmental risk (such as Cu, Pb, Zn, Fe). It was also a study of bacterial totals included both total Bacteria (TB) and Total Coliform Bacteria (TC) and Fecal Coliform (FC) and Fecal Streptococci (FS). The stu
... Show MoreSome cases of common fixed point theory for classes of generalized nonexpansive maps are studied. Also, we show that the Picard-Mann scheme can be employed to approximate the unique solution of a mixed-type Volterra-Fredholm functional nonlinear integral equation.
Carbon nanotubes (CNTs) were synthesized via liquefied petroleum gas (LPG) as precursor using flame fragments deposition (FFD) technique. In vitro, biological activates of carbon nanotubes (CNTs) synthesized by FFD technique were investigated. The physiochemical characterizations of synthesized CNTs are similar to other synthesized CNTs and to the standard sample. Pharmaceutical application of synthesized CNTs was studied via conjugation and adsorption with different types of medicines as promote groups. The conjugation of CNTs was performed by adsorption the drugs such as sulfamethoxazole (SMX) and trimethoprim (TMP) on CNTs depending on physical properties of both bonded parts. The synthesized CNTs almost have the same performance in a
... Show MoreWeibull distribution is considered as one of the most widely distribution applied in real life, Its similar to normal distribution in the way of applications, it's also considered as one of the distributions that can applied in many fields such as industrial engineering to represent replaced and manufacturing time ,weather forecasting, and other scientific uses in reliability studies and survival function in medical and communication engineering fields.
In this paper, The scale parameter has been estimated for weibull distribution using Bayesian method based on Jeffery prior information as a first method , then enhanced by improving Jeffery prior information and then used as a se
... Show MoreBackground: The human face has its special characteristics. It may be categorized into essentially three kinds in horizontal and vertical directions: short or brachyfacial, medium or mesofacial and long or dolichofacial. The aim of this study was to describe several orofacial indices and proportions of adults, according to gender in Iraqi subjects by using cone beam computed tomography . materials and methods: This prospective study included 100 Iraqi patients (males and females) ranging from 20 to 40 years. All subjects attended the Oral and Maxillofacial Radiology Department of Health Specialist Center for Dentistry in AL Sadr city in Baghdad taking cone beam computed tomography scan for different diagnostic purposes from October 2016 to
... Show MoreA comparison of double informative and non- informative priors assumed for the parameter of Rayleigh distribution is considered. Three different sets of double priors are included, for a single unknown parameter of Rayleigh distribution. We have assumed three double priors: the square root inverted gamma (SRIG) - the natural conjugate family of priors distribution, the square root inverted gamma – the non-informative distribution, and the natural conjugate family of priors - the non-informative distribution as double priors .The data is generating form three cases from Rayleigh distribution for different samples sizes (small, medium, and large). And Bayes estimators for the parameter is derived under a squared erro
... Show MoreA mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others
... Show More