The recognition of handwritten numerals has many applications in automatic identification and cognition. This research contains three experimented scenarios to recognize the handwritten English (i.e. Arabic) numerals. In the first scenario the bilinear interpolation of the image is used, while in the second scenario and after the bilinear interpolation is being applied, the Sobel operators are applied on the resulted interpolated image. In the third scenario which represents the last one, the effect of normalization of image dimensions is tested. 550 images of handwritten numerals were tested. Three types of tests were conducted for each scenario namely: trained-set test, not-trained-set test and comprehensive-set test. Depending on the results obtained from the comprehensive-set test, the best scenario is the second scenario of bilinear interpolation followed by Sobel operators which leads to excellent success rate reaches to 97.63%.
The study aims to display the scientific benefit offered by modern electronic programs for various scientific research methods, while determining the positive scientific role played by these programs in modernizing the methodologies and logic of scientific thinking, especially with the rapid development of the sciences and their curricula.
These programs link accurately with scientific results. The importance of the study is to provide practical mechanisms to highlight the scientific projection of the electronic programs in various steps of scientific research.
A case study was used for Tropes version 8.4, which analyzes written, audio and visual semantic texts and presents a set of statistical results that facilitate the difficult
The research aims to introduce international valuation standards and to identify the relationship between international valuation standards and international accounting and financial reporting standards in enhancing the quality of financial reporting (appropriate accounting information) through the use of statistical models for the purpose of measuring the property of appropriateness of accounting information through the use of statistical models for the purpose of proving the hypothesis that The research referred to it, and accordingly, the Francis and Kothari models were used to measure the appropriateness of accounting information (the quality of the information). The conclusions reached by the two researchers is that the sett
... Show Moreبهذا البحث نقارن معاييرالمعلومات التقليدية (AIC , SIC, HQ , FPE ) مع معيارمعلومات الانحراف المحور (MDIC) المستعملة لتحديد رتبة انموذج الانحدارالذاتي (AR) للعملية التي تولد البيانات,باستعمال المحاكاة وذلك بتوليد بيانات من عدة نماذج للأنحدارالذاتي,عندما خضوع حد الخطأ للتوزيع الطبيعي بقيم مختلفة لمعلماته
... Show MoreIt is an ideal area of research to examine related indicators to anticipate relative tectonic activities, where there is a broad range of geological formations with elements of different sedimentary rocks. This study includes assessing and evaluating the relative tectonic activities within the Sargalu area by using a morphometric approach, which involved the use of different indices that can explain and help understanding the geometry, development level, lithology, and structural disturbance on a sub-basinal level. The research was accomplished by using ArcGIS 10.5 hydrology tools to design the drainage system of each studied stream. The Advanced Spaceborne Thermal Emission Radiometer (ASTER) satellite imagery data and the Digital Elevat
... Show MoreResearchers often equate database accounting models in general and the Resources-Events-Agents (REA) accounting model in particular with events accounting as proposed by Sorter (1969). In fact, REA accounting, database accounting, and events accounting are very different. Because REA accounting has become a popular topic in AIS research, it is important to agree on exactly what is meant by certain ideas, both in concept and in historical origin. This article clarifies the analyzing framework of REA accounting model and highlights the differences between the terms events accounting, database accounting, semantically-modeled accounting, and REA accounting. It als
... Show MoreThis work implements the face recognition system based on two stages, the first stage is feature extraction stage and the second stage is the classification stage. The feature extraction stage consists of Self-Organizing Maps (SOM) in a hierarchical format in conjunction with Gabor Filters and local image sampling. Different types of SOM’s were used and a comparison between the results from these SOM’s was given.
The next stage is the classification stage, and consists of self-organizing map neural network; the goal of this stage is to find the similar image to the input image. The proposal method algorithm implemented by using C++ packages, this work is successful classifier for a face database consist of 20
... Show MoreElectromyogram (EMG)-based Pattern Recognition (PR) systems for upper-limb prosthesis control provide promising ways to enable an intuitive control of the prostheses with multiple degrees of freedom and fast reaction times. However, the lack of robustness of the PR systems may limit their usability. In this paper, a novel adaptive time windowing framework is proposed to enhance the performance of the PR systems by focusing on their windowing and classification steps. The proposed framework estimates the output probabilities of each class and outputs a movement only if a decision with a probability above a certain threshold is achieved. Otherwise (i.e., all probability values are below the threshold), the window size of the EMG signa
... Show MoreFace recognition is a type of biometric software application that can identify a specific
individual in a digital image by analyzing and comparing patterns. It is the process of
identifying an individual using their facial features and expressions.
In this paper we proposed a face recognition system using Stationary Wavelet Transform
(SWT) with Neural Network, the SWT are applied into five levels for feature facial
extraction with probabilistic Neural Network (PNN) , the system produced good results
and then we improved the system by using two manner in Neural Network (PNN) and
Support Vector Machine(SVM) so we find that the system performance is more better
after using SVM where the result shows the performance o
This work is aimed to design a system which is able to diagnose two types of tumors in a human brain (benign and malignant), using curvelet transform and probabilistic neural network. Our proposed method follows an approach in which the stages are preprocessing using Gaussian filter, segmentation using fuzzy c-means and feature extraction using curvelet transform. These features are trained and tested the probabilistic neural network. Curvelet transform is to extract the feature of MRI images. The proposed screening technique has successfully detected the brain cancer from MRI images of an almost 100% recognition rate accuracy.