The objective of this research is to select the most suitable drilling location of new groundwater exploration wells, with a decision-making tool from Geographic Information System (GIS). The optimum location will be evaluated base on the hydro-geoelectrical parameter derived from Vertical Electrical Sound (VES) including Longitudinal Conductance, the thickness of the aquifer, the apparent resistivity and Transmissivity. From the Geo-electrical method (VES) the finds shows that the aquifers in the study area have Apparent Resistivity ranging from 0.32 to 40.24 Ωm, Thickness between 0.21 m to 15.06 m, Longitudinal Conductance ranging from 0.006 to 10.246Ω-1 and Transmissivity ranging from 0.14 to 10.38m2/day. Hydro-geoelectrical data were integrated into GIS to precisely determine the best location for groundwater borehole. Finally, the study location was classified into three classes; not suitable, moderately suitable and highly suitability with respect to the input factors using the Fuzzy overly combing method. It’s evident that the middle part of the area in study represents the optimum location for the drilling of groundwater boreholes.
The adsorption ability of Iraqi initiated calcined granulated montmorillonite to adsorb Symmetrical Schiff Base Ligand 4,4’-[hydrazine-1, 2-diylidenebis (methan-1-yl-1-ylidene)) bis (2-methoxyphenol)] derived from condensation reaction of hydrazine hydrate and 4-hydroxy-3-methoxybenzaldehyde, from aqueous solutions has been investigated through columnar method.The ligand (H2L) adsorption found to be dependent on adsorbent dosage, initial concentration and contact time.All columnar experiments were carried out at three different pH values (5.5, 7and 8) using buffer solutions at flow rate of (3 drops/ min.),at room temperature (25±2)°C. The experimental isotherm data were analyzed using Langmuir, Freundlich and Temkin equations. The monol
... Show MoreThe effect of thickness variation on some physical properties of hematite α-Fe2O3 thin films was investigated. An Fe2O3 bulk in the form of pellet was prepared by cold pressing of Fe2O3 powder with subsequent sintering at 800 . Thin films with various thicknesses were obtained on glass substrates by pulsed laser deposition technique. The films properties were characterized by XRD, and FT-IR. The deposited iron oxide thin films showed a single hematite phase with polycrystalline rhombohedral crystal structure .The thickness of films were estimated by using spectrometer to be (185-232) nm. Using Debye Scherrerś formula, the average grain size for the samples was found to be (18-32) nm. Atomic force microscopy indicated that the films had
... Show MoreThe reaction oisolated and characterized by elemental analysis (C,H,N) , 1H-NMR, mass spectra and Fourier transform (Ft-IR). The reaction of the (L-AZD) with: [VO(II), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)], has been investigated and was isolated as tri nuclear cluster and characterized by: Ft-IR, U. v- Visible, electrical conductivity, magnetic susceptibilities at 25 Co, atomic absorption and molar ratio. Spectroscopic evidence showed that the binding of metal ions were through azide and carbonyl moieties resulting in a six- coordinating metal ions in [Cr (III), Mn (II), Co (II) and Ni (II)]. The Vo (II), Cu (II), Zn (II), Cd (II) and Hg (II) were coordinated through azide group only forming square pyramidal
... Show More