In this study, the surface of the epoxy/Al composite is treated using a dielectric barrier discharge (DBD) plasma in the presence of air. The epoxy composite was prepared by mixing 0.1g and 0.3 g aluminum powder with epoxy resin and its hardener in a ratio of 3:1. The surface epoxy/Al composite as a dielectric barrier layer (DB) is studied at an applied frequency of 8 kHz and at three exposure times 0, 2, and 4 min. The UV degradation process has been studied using UV-Visible spectroscopy, for these polymers. The absorbance intensity in the UV region (200–320 nm) was high. The absorbance level decreased after 2 minutes and increased after 4 min exposure time. Before exposure to plasma, the epoxy/Al composite at 0.1 g Al had an optical band gap of 3.72eV, while it was 3.6 and 3.42 eV after 2, and 4 min exposure time, respectively. For the composite with 0.3 g Al, the optical band gap was 3.6 eV before exposure which decreased to 3.2 and 2.78 eV after exposure to plasma for 2 and 4 min, respectively. This was due to the increase in conductivity for epoxy/Al composite with 0.3 g Al. Also, after treatment, physical changes happened on their surfaces as well as chemical changes which have been test using AFM technique. Three spectra are characterized by the appearance of halos extending in 2θ range from 16˚ to 45˚ for the XRD spectra of the untreated and treated Epoxy/Al composite samples at several exposed time (0, 2, and 4 min).
Based on the streamer growth model, the streamer discharge propagation was simulated in aid of finite element technique. That was done within two non- mixed dielectric liquids (Normal-Hexane and Acetone) located between two electrodes in pin - plane configuration. The output results show that, the path of the streamer was affected by the interface between the two liquids; the streamer path crosses this interface under some conditions such as the permittivity of the liquids and the distance between this interface and the tip of the pin. Under other conditions, the streamer path grows along the interface. The results were assisted by the development of the potential and the electric field distributions with the growth of the streamer propa
... Show MoreRemoving Congo red (CR) is critical in wastewater treatment. We introduce a combination of electrocoagulation (EC) and electro-oxidation (EO) to address the elimination of CR. We also discuss the deposition of triple oxides (Cu–Mn–Ni) simultaneously on both anodic and cathodic graphite electrodes at constant current density. These electrodes efficiently worked as anodes in the EC-EO system. The EC-CO combination eliminated around 98 % of the CR dye and about 95 % of the Chemical Oxygen demand (COD), and similar results were obtained with the absence of NaCl. Thus, EC-EO is a promising technique to remove CR in an environmentally friendly pathway.
Pre-breakdown phenomenon was investigated within the two, non-mixed dielectric liquids; transformation oil and cresol. Finite element technique was used to follow the initiation and growth of plasma channels (streamer discharge) within pin-plane configuration. That was done for different spacing between the pin-electrode and the liquid-liquid interface. Streamer growth model assumed that, the streamer initiation occurs at the region of the highest value of electric field. Our study shows that the streamer initiates at the tip of the pin and growths toward the other electrode. The study shows, too, that the streamer path controlled by the difference of permittivity of the two liquids and spacing distance of the liquid-liquid interface fro
... Show MorePolyaniline (PANI) has been prepared by the oxidation method in order to fabricate it with various concentrations of copper nanoparticles (CuNPs) which produced using the reduction method. Various techniques have characterized pure PANI and PANI doped CuNPs composites, such as fourier transform infrared spectroscopy (FT-IR), X-ray diffraction spectroscopy (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS), which were provided important information about the structure and morphology of the fabricated polymer nanocomposites. The properties of dielectric permittivity (έ), dielectric loss (ἔ) and electrical conductivity (σ_AC) properties were studied at room temperature versus a range
... Show MoreThis investigation aims to explore the potential of waterworks sludge (WS), low-cost byproduct of water treatment processes, as a sorbent for removing Congo Red (CR) dyes. This will be achieved by precipitating nano-sized (MgAl-LDH)-layered double hydroxide onto the surface of the sludge. The efficiency of utilizing MgAl-LDH to modify waterworks sludge (MWS) for use in permeable reactive barrier technology was confirmed through analysis with Fourier transform infrared and X-ray diffraction. The isotherm model was employed to elucidate the adsorption mechanisms involved in the process. Furthermore, the COMSOL model was utilized to establish a continuous testing model for the analysis of contaminant transport under diverse conditions.
... Show MoreThis investigation aims to explore the potential of waterworks sludge (WS), low-cost byproduct of water treatment processes, as a sorbent for removing Congo Red (CR) dyes. This will be achieved by precipitating nano-sized (MgAl-LDH)-layered double hydroxide onto the surface of the sludge. The efficiency of utilizing MgAl-LDH to modify waterworks sludge (MWS) for use in permeable reactive barrier technology was confirmed through analysis with Fourier transform infrared and X-ray diffraction. The isotherm model was employed to elucidate the adsorption mechanisms involved in the process. Furthermore, the COMSOL model was utilized to establish a continuous testing model for the analysis of contaminant transport under diverse conditions. A st
... Show MoreBackground: Prophylaxis methods are used to mechanically remove plaque and stain from tooth surfaces; such methods give rise to loss of superficial structure and roughen the surface of composites as a result of their abrasive action. This study was done to assess the effect of three polishing systems on surface texture of new anterior composites after storage in artificial saliva. Materials and methods: A total of 40 Giomer and Tetric®N-Ceram composite discs of 12 mm internal diameter and 3mm height were prepared using a specially designed cylindrical mold and were stored in artificial saliva for one month and then samples were divided into four groups according to surface treatment: Group A (control group):10 specimens received no surfa
... Show MorePositron annihilation lifetime (PAL) technique has been employed to
study the microstructural changes of polyurethane (PU), EUXIT 101
and epoxy risen (EP), EUXIT 60 by Gamma-ray irradiation with the
dose range (95.76 - 957.6) kGy. The size of the free volume hole and
their fraction in PU and EP were determined from ortho-positronium
lifetime component and its intensity in the measured lifetime spectra.
The results show that the irradiation causes significant changes in the
free volume hole size (Vh) and the fractional free volume (Fh), and
thereby the microstructure of PU and EP. The results indicate that
the γ-dose increases the crystallinity in the amorphous regions of PU
and increas
Ultraviolet light radiation is applied to treat Plaque Psoriasis disease by targeted phototherapy. This is available through Narrowband-UVB light radiation devices peaked at wavelength 311 nm. Ten cases were chosen as a study group, 8 males aged 22-40 years old, and 2 females aged 25 and 32 years old who were exposed to ultraviolet light radiation. Their recovery or improvement was followed weekly. Different doses were used according to the severity of the lesion and as a trial for the outcome. The dose was given two times a week, starting with 200mJ/cm2, and subsequently increased by 100 or 200 mJ/cm2 reaching a maximum dose as tolerated by each individual patient. Improvement was observed after 4 – 6 weeks. The
... Show MoreRapid breakdown anodization (RBA) process was used to fabricate TiO2 sensor to measure pressure and humidity and sense gases at room temperature. This chemical process transformed Ti to its oxide (TiO2) as a powder with amorphous phase as X ray diffraction (XRD) technique confirmed. This oxide consisted from semi spherical nanoparticles and titania nanotubes (TNTs) as Scanning electron microscope (SEM) technique showed. TiO2 powder was deposited on Ti substrates by using electrophoretic deposition (EPD) method. Average pressure sensitivity was 0.34 MΩ/bar and hysteresis area was 1.4 MΩ .bar. Resistance of TiO2 decreased exponentially with the increasing of relative
... Show More