In this study, we investigated the ability of nanoliposomes preparation, as a nanoadjuvant, to entrap soluble Leismania donovani antigens (SLAs) and release in vitro. The parasite reactivation was carried out when inoculated into Rosewell park memorial institute media (RPMI) and incubated at 23 °C for 4 days. L. donovani promastigote inoculum (104 cell / ml) of 4 days was used to inoculate modified medium of Saline - Neopeptone and Blood agar 9 (SNB 9) to produce promastigote mass. SLAs were extracted from the promastigotes ghost membrane after fourth passages of subculturing in SNB. The membrane pellet obtained was suspended in 5 mM Tris buffer (pH 7.6) and sonicated three times at 4 °C and entrapped in freshly prepared nanoliposomes. Lipids mixture of 4mM Phosphatidylcholine, 2.2 mM Cholesterol and 0.55 mM Phosphatidylethanolamine in a ratio of 7:2:1 were used to prepare nanoliposome. Physio-chemical characterizations of prepared nanoliposomes was performed by using Scanning Electron Microscope (SEM) , Atomic Force Microscope (AFM) and Zeta Potential assays to determine the size, morphology and charge. The efficiency of freshly prepared nanoliposoms to entrap SLAs was determined by measuring the nanoliposome efficiency entrapment (EE). The percentage of EE was 50 and 27.5 of SLAs entrapped nanoliposomes prepared by Sephadex G25 and Sephadex G75, respectively. Moreover, stability of SLAs entrapped nanoliposomes was examined at 4 and 37 °C as a storage temperature.
The purpose of this research was to prepare, characterize, and evaluate the new antimicrobial peptide KSL peptide encapsulated in poly(D,L-lactide-co-glycolide) (PLGA)composite microspheres. KSL was loaded in poly(acryloyl hydroxyethyl) starch (acHES) micropar-ticles, and then the peptide-containing microparticles were encapsulated in the PLGA matrix by a solvent extraction /evaporation method.
KSL-loaded PLGA microspheres were also prepared without the starch hydrogel microparticle microspheres for comparison study. KSL peptide microspheres were characterized for drug content, surface morphology, microspheres size determination, polymers stability , in vitro microspheres degradation and in vitro release. KSL peptide
... Show MoreHypertension is one of the main causes of heart disease; beta- blockers play a crucial role in the management of patients with essential hypertension. Bisoprolol is one of the widely used drugs for the treatment of hypertension. Bisoprolol tablets were prepared by two methods (direct and wet) using different proportion and types of diluents, different binder types and forms, then evaluated for, weight variation, hardness, friability, disintegration time and dissolution rate. The results were compared with a reference Bisoprolol tablet.
Both methods of preparation wet and direct compression method gave good results, which are consistent with the requirements of British Pharmacopeia and United States Pharmacopeia. It was found that
... Show MoreFH Ghanim, Journal of Global Pharma Technology, 2018
ABSTRACT:
Microencapsulation is used to modify and retard drug release as well as to overcome the unpleasant effect
(gastrointestinal disturbances) which are associated with repeated and overdose of ibuprofen per day.
So that, a newly developed method of microencapsulation was utilized (a modified organic method) through a
modification of aqueous colloidal polymer dispersion method using ethylcellulose and sodium alginate coating materials to
prepare a sustained release ibuprofen microcapsules.
The effect of core : wall ratio on the percent yield and encapsulation efficiency of prepared microcapsules was low, whereas
, the release of drug from prepared microcapsules was affected by core: wall ratio ,proportion of coa
Acetophenone sulfamethoxazole and 3-Nitrobenzophenone sulfamethoxazole were prepared from the reaction of sulfamethoxazole with two ketones. The prepared ligands were identified by (C.H.N) analysis and UV-VIS, FT-IR spectroscopic techniques. Metal complexes of the two ligands were prepared in an aqueous alcohol with Zn (II), Mn (II) and Cu (II) ions with a molar ratio1:1. The proposed general formula for the resulting complexes was [ML.CL2.H2O]H2O .The complexes were characterized by (C.H.N) technique , spectroscopic methods ,conductivity, atomic absorption ,magnetic susceptibility measurements and melting point. According to the results obtained, the suggested geometry is to be octahedral for all the complexes.
The cost-effective removal of heavy metal ions represents a significant challenge in environmental science. In this study, we developed a straightforward and efficient reusable adsorbent by amalgamating chitosan and vermiculite (forming the CSVT composite), and comprehensively investigated its selective adsorption mechanism. Different techniques, such as Fourier-transform infrared spectroscopy (FTIR), zeta potential analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer, Emmett, Teller (BET) analysis were employed for this purpose. The prepared CSVT composite exhibited a larger surface area and higher mesoporosity increasing from 1.9 to 17.24 m2/g compared to pristine chitosan. The adsorption capabilities of the
... Show MoreIn the present work, a first-row divalent d-transition metal obtained from curcumin(Curc) and L-3,4-dihydroxyphenylalanin(L-dopa)have been synthesized which their complexes and characterized by C.H.N, conductance, spectral methods: FT-IR, Ultra–Visible. Magneto-chemical measurements, molar conductance ΛM (1×10−3 mol/L in DMSO):36- 0.84 ohm-1.cm2.mol-1 (non-electrolyte). The data shows that the complexes have the structure [M((II))-(Curc)-(L-dopa)] system. Electronic and magnetic data suggest an octahedral geometry for all complexes in which the (L-dopa) and curcumin act as bidentate ligands. Curcumin coordinated to the metal ions M (II) through the lone pair of electrons of oxygen in 2(C=O) groups. The (L-dopa) coordinated to M (II) a
... Show MoreThe current study includes preparing a geometric proposal of the main parameters that must be worked within a seismic reflection survey to prepare a three-dimensional subsurface image. This image represents the Siba oil field located in Basra, southern Iraq. The results were based on two options for selecting these approved elements to create a three-dimensional image of the Mishrif, Zubair and Yamama formations as well as the Jurassic and Permian Khuff and the pre-Khuff reservoir area. The first option is represented in the geometry in option -1 is 12 lines, 6 shots, and 216 chs. The receiver density is 66.67 receivers / km2, so the shot density is the same. Total shots are 21000, which is the same number of receiv
... Show More