In this study, we investigated the ability of nanoliposomes preparation, as a nanoadjuvant, to entrap soluble Leismania donovani antigens (SLAs) and release in vitro. The parasite reactivation was carried out when inoculated into Rosewell park memorial institute media (RPMI) and incubated at 23 °C for 4 days. L. donovani promastigote inoculum (104 cell / ml) of 4 days was used to inoculate modified medium of Saline - Neopeptone and Blood agar 9 (SNB 9) to produce promastigote mass. SLAs were extracted from the promastigotes ghost membrane after fourth passages of subculturing in SNB. The membrane pellet obtained was suspended in 5 mM Tris buffer (pH 7.6) and sonicated three times at 4 °C and entrapped in freshly prepared nanoliposomes. Lipids mixture of 4mM Phosphatidylcholine, 2.2 mM Cholesterol and 0.55 mM Phosphatidylethanolamine in a ratio of 7:2:1 were used to prepare nanoliposome. Physio-chemical characterizations of prepared nanoliposomes was performed by using Scanning Electron Microscope (SEM) , Atomic Force Microscope (AFM) and Zeta Potential assays to determine the size, morphology and charge. The efficiency of freshly prepared nanoliposoms to entrap SLAs was determined by measuring the nanoliposome efficiency entrapment (EE). The percentage of EE was 50 and 27.5 of SLAs entrapped nanoliposomes prepared by Sephadex G25 and Sephadex G75, respectively. Moreover, stability of SLAs entrapped nanoliposomes was examined at 4 and 37 °C as a storage temperature.
In this work preparation of antireflection coating with single layer of MgO using pulsed laser deposition (PLD) method which deposit on glass substrate with different thicknesses (90 and 100) nm annealed at temperature 500 K was done.
The optical and structural properties (X-ray diffraction) have been determined. The optical reflectance was computed with the aid of MATLAB over the visible and near infrared region. Results shows that the best result obtained for optical performance of AR'Cs at 700 shots with thickness 90 nm nanostructure single layer AR'Cs and low reflection at wavelength 550 nm.
The purpose of this study was to develop poloxamer-based in-situ gel of chloramphenicol aiming to increase bioavailability and prolong corneal contact time, controlling drug release, and enhancing ocular bioavailability. The in-situ gel was prepared using different concentrations of poloxamer 407 combined with hydroxypropyl methyl cellulose (HPMC) or carbapol 940 to achieve gelation temperature about physiological temperature and improve rheological behavior and gelling properties of poloxamer gel. The prepared formulations were evaluated for their appearance, pH, and sol-gel transition temperature. The formulations F2, F3, and F5 have a gelation temperature within the accepted range 35-370C an
... Show MoreTo fabricate an inexpensive surface coating with excellent mechanical properties with good water resistance and thermal diffusion, white eggshell fibers with particle size (~1micrometer) has been added by different weight percentages (1,2,3,4,5,6,7 and 8 %) to Unsaturated Polyester.
The weight ratio (4%) of eggshell powder is a good ratio to be added to polyester to improve its mechanical properties, such as hardness, impact strength, and wear resistance. The hardness was improved by (3.75%); impact strength has the same value as polyester, flexural strength by (8.43%) and high improvement in wear resistance (74.4%), as well as to get further improvements in mechanical properties of polyester, the eggshell powder was added
... Show MoreBackground: Fast dissolving oral drug delivery system is solid dosage form which disintegrates or dissolves within second when placed in the mouth without need of water or chewing. In present investigation, an attempt has been made to develop oral fast dissolving film of calcium channel blocker lacidipine. Method: Five formulas were prepared by solvent casting method using HPMC (METOLOSE)® as a film forming polymer and evaluated for their physical characteristics such as thickness, weight variation, folding endurance, drug content, disintegration time and in vitro drug release. The compatibility of the drug in the formulation was confirmed by FTIR and DSC studies. Result and Conclusion: The optimized formula F1 showed minimum in vitr
... Show MoreA transdermal drug delivery system (TDDS) is characterized by the application of medications onto the skin's surface to deliver drugs at a controlled and predefined rate through the skin. Spanlastics, an elastic nanovesicle capable of transporting various pharmacological substances, shows promise as a drug delivery carrier. It offers numerous advantages over traditional vesicular systems applied topically, including enhanced stability, flexibility in penetration, and improved targeting capabilities. This study aims to develop meloxicam (MX)-loaded spanlastics gel as skin delivery carriers and to look into the effects of formulation factors like Tween80, Brij 35, and carbopol concentration on the properties of spanlastics gel, like pH, drug
... Show MoreThe reducing of erosion and the solubility of irrigation canals soils which constructed on gypsum soil is important in civil and water resources engineering. The main problem of gypsum soils is the presence of gypsum which represents one of most complex engineering problems, especially when accompanied by the moving of water which represent dynamic load along the canal. There are several solutions to this problem, in this research “Poly urethane” is used to give the gypsum soil sufficient hardness to reduce the solubility and erosion, after compacting the soil in the canal, percentages of Poly urethane was used to making cover to the soil by mixing percent of soil with Poly urethane, and the ratio was as follows: (5 and 10) % an
... Show More