Recently, in 2014 [1] the authors introduced a general family of summation integral Baskakov-type operators ( ) . In this paper, we investigate approximation properties of partial sums for this general family.
In this present paper, we obtain some differential subordination and superordination results, by using generalized operators for certain subclass of analytic functions in the open unit disk. Also, we derive some sandwich results.
In this paper, we will introduce a new concept of operators in b-Hilbert space, which is respected to self- adjoint operator and positive operator. Moreover we will show some of their properties as well as the relation between them.
The relation between faithful, finitely generated, separated acts and the one-to-one operators was investigated, and the associated S-act of coshT and its attributes have been examined. In this paper, we proved for any bounded Linear operators T, VcoshT is faithful and separated S-act, and if a Banach space V is finite-dimensional, VcoshT is infinitely generated.
In this paper, we define two operators of summation and summation-integral of q-type in two dimensional spaces. Firstly, we study the convergence of these operators and then we prove Voronovskaya- type asymptotic formulas for these operators.
In this paper we obtain some statistical approximation results for a general class of maxproduct operators including the paused linear positive operators.
The main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators
Let be an infinite dimensional separable complex Hilbert space and let , where is the Banach algebra of all bounded linear operators on . In this paper we prove the following results. If is a operator, then 1. is a hypercyclic operator if and only if D and for every hyperinvariant subspace of . 2. If is a pure, then is a countably hypercyclic operator if and only if and for every hyperinvariant subspace of . 3. has a bounded set with dense orbit if and only if for every hyperinvariant subspace of , .
A group of acceptance sampling to testing the products was designed when the life time of an item follows a log-logistics distribution. The minimum number of groups (k) required for a given group size and acceptance number is determined when various values of Consumer’s Risk and test termination time are specified. All the results about these sampling plan and probability of acceptance were explained with tables.
Many approaches of different complexity already exist to edge detection in
color images. Nevertheless, the question remains of how different are the results
when employing computational costly techniques instead of simple ones. This
paper presents a comparative study on two approaches to color edge detection to
reduce noise in image. The approaches are based on the Sobel operator and the
Laplace operator. Furthermore, an efficient algorithm for implementing the two
operators is presented. The operators have been applied to real images. The results
are presented in this paper. It is shown that the quality of the results increases by
using second derivative operator (Laplace operator). And noise reduced in a good