This study was aimed to detect and identify genetic mutations in γ-aminobutyric acid receptor β3 subunit encoding gene (GABRB3) and its association with autism spectrum disorders. Forty autistic patients and 25 non-autistic as control group (5 unaffected sibling and 20 unrelated) with age range from 3 – 10 years were included in this study. Chromosomal DNA was extracted from blood samples followed by polymerase chain reaction (PCR) amplification of two targeted regions which include: (exon2-intron2-exon3) region and (exon 6) region of GABRB3 for subsequent DNA sequencing. Identical bands related to the targeted regions were present in all samples. A sample of PCR products of patients and controls were sequenced. Sequencing results revealed the presence of four different single nucleotide polymorphism (SNPs) in four autistic patients (one SNP in exon2, two SNPs in intron 1 and one SNP in the beginning of intron 3) while four different autistic samples and three from control group had no mutations along this region. Exon 6 showed 100 % sequence identity in all samples (seven autistic and three from control group). The translation of nucleotides sequences into amino acid sequence revealed that the SNP in exon 2 caused a change of amino acid in the polypeptide sequence by changing the codon (AGA) which codes for arginine to (AAA) which codes for lysine. The online software tool, RaptorX was used for the prediction of the three dimensional structure of the polypeptides in which exon 2 carrying one SNP (30 a.a.) showed that 5 (16%) positions predicted as disordered, while the structure prediction of polypeptide translated from exon 3 was not obtained due to its small length (22 a.a.). Structure prediction of polypeptide of exon 6 (46 a.a.) showed that (0%) positions predicted as disordered, considering its lack of mutations. These results suggest the association of the detected SNPs with autism, especially the SNP located in exon 2 considering that it changed the polypeptide three dimensional structure, thus it could possibly alter its function. All SNPs are reported for the first time in this study except the one in intron 3 (rs755863611) which was previously reported.
Superconducting compound Bi2Sr2-xYxCa2Cu3O10+δ were Synthesized by method of solid state reaction, at 1033 K for 160 hours temperature of the sintering at normal atmospheric pressure where substitutions Yttrium oxide with Strontium. When Y2O3 concentration (0.0, 0.1, 0.2, 0.3, 0.4 and 0.5). All specimens of Bi2Sr2Ca2Cu3O10+δ superconducting compounds were examined. The resistivity of electrical was checked by the four point probe technique, It was found th
The existing investigation explains the consequence of irradiation of violet laser on the structure properties of MawsoniteCu6Fe2SnS8 [CFTS] thin films. The film was equipped by the utilization of semi-computerized spray pyrolysis technique (SCSPT), it is the first time that this technique is used in the preparation and irradiation using a laser. when the received films were processed by continuous red laser (700 nm) with power (>1000mW) for different laser irradiation time using different number of times a laser scan (0, 6, 9, 12, 15 and 18 times) with total irradiation time (0,30,45,60,75,90 min) respectively at room temperature.. The XRD diffraction gave polycrysta
... Show MoreIn this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I
... Show More