Reflections are ubiquitous effects in photos taken through transparent glass mediums, and represent a big problem in photography that impacts severely the performance of computer vision algorithms. Reflection removal is widely needed in daily lives with the prevalence of camera-equipped smart phones, and it is important, but it is a hard problem. This paper addresses the problem of reflection separation from two images taken from different viewpoints in front of a transparent glass medium, and proposes algorithm that exploits the natural image prior (gradient sparsity prior), and robust regression method to remove reflections. The proposed algorithm is tested on real world images, and the quantitative and visual quality comparisons were proved the better performance of the proposed algorithm on an average of 0.3% improvement on the blind referenceless image spatial quality (brisque) error metric than state of art algorithm.
This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi
This paper describes the application of consensus optimization for Wireless Sensor Network (WSN) system. Consensus algorithm is usually conducted within a certain number of iterations for a given graph topology. Nevertheless, the best Number of Iterations (NOI) to reach consensus is varied in accordance with any change in number of nodes or other parameters of . graph topology. As a result, a time consuming trial and error procedure will necessary be applied
to obtain best NOI. The implementation of an intellig ent optimization can effectively help to get the optimal NOI. The performance of the consensus algorithm has considerably been improved by the inclusion of Particle Swarm Optimization (PSO). As a case s
The traditional shortest path problem is mainly concerned with identifying the associated paths in the transportation network that represent the shortest distance between the source and the destination in the transportation network by finding either cost or distance. As for the problem of research under study it is to find the shortest optimal path of multi-objective (cost, distance and time) at the same time has been clarified through the application of a proposed practical model of the problem of multi-objective shortest path to solve the problem of the most important 25 commercial US cities by travel in the car or plane. The proposed model was also solved using the lexicographic method through package program Win-QSB 2.0 for operation
... Show MoreThis paper describes a new proposed structure of the Proportional Integral Derivative (PID) controller based on modified Elman neural network for the DC-DC buck converter system which is used in battery operation of the portable devices. The Dolphin Echolocation Optimization (DEO) algorithm is considered as a perfect on-line tuning technique therefore, it was used for tuning and obtaining the parameters of the modified Elman neural-PID controller to avoid the local minimum problem during learning the proposed controller. Simulation results show that the best weight parameters of the proposed controller, which are taken from the DEO, lead to find the best action and unsaturated state that will stabilize the Buck converter system performan
... Show MoreA Simple, rapid and sensitive extractive and spectrophotometric method has been described for the analysis of diphenhyldramine –HCl (DPH) in pure form and in pharmaceutical formulations. The method is based on the formation of chloroform soluble ion-pair complex with Bromophenol blue(BPB) in a phthalate buffer at pH 3.0.The extracted complex shows maximum absorbance at 410 nm. Beer's law is obeyed in the concentration range 0.2-25.0 µg.ml-1. The molar absorptivity and Sandell's sensitivity for the system being 2.416x104 L.mol-1.cm-1 and 0.012µg.cm-2, respectively. The limit of detection was found to be 0.155 µg.ml-1. The proposed me
... Show MoreSolving problems via artificial intelligence techniques has widely prevailed in different aspects. Implementing artificial intelligence optimization algorithms for NP-hard problems is still challenging. In this manuscript, we work on implementing the Naked Mole-Rat Algorithm (NMRA) to solve the n-queens problems and overcome the challenge of applying NMRA to a discrete space set. An improvement of NMRA is applied using the aspect of local search in the Variable Neighborhood Search algorithm (VNS) with 2-opt and 3-opt. Introducing the Naked Mole Rat algorithm based on variable neighborhood search (NMRAVNS) to solve N-queens problems with different sizes. Finding the best solution or set of solutions within a plausible amount of t
... Show MoreElectrical distribution system loads are permanently not fixed and alter in value and nature with time. Therefore, accurate consumer load data and models are required for performing system planning, system operation, and analysis studies. Moreover, realistic consumer load data are vital for load management, services, and billing purposes. In this work, a realistic aggregate electric load model is developed and proposed for a sample operative substation in Baghdad distribution network. The model involves aggregation of hundreds of thousands of individual components devices such as motors, appliances, and lighting fixtures. Sana’a substation in Al-kadhimiya area supplies mainly residential grade loads. Measurement-based
... Show MoreA Strength Pareto Evolutionary Algorithm 2 (SPEA 2) approach for solving the multi-objective Environmental / Economic Power Dispatch (EEPD) problem is presented in this paper. In the past fuel cost consumption minimization was the aim (a single objective function) of economic power dispatch problem. Since the clean air act amendments have been applied to reduce SO2 and NOX emissions from power plants, the utilities change their strategies in order to reduce pollution and atmospheric emission as well, adding emission minimization as other objective function made economic power dispatch (EPD) a multi-objective problem having conflicting objectives. SPEA2 is the improved version of SPEA with better fitness assignment, density estimation, an
... Show MoreThis paper presents a new design of a nonlinear multi-input multi-output PID neural controller of the active brake steering force and the active front steering angle for a 2-DOF vehicle model based on modified Elman recurrent neural. The goal of this work is to achieve the stability and to improve the vehicle dynamic’s performance through achieving the desired yaw rate and reducing the lateral velocity of the vehicle in a minimum time period for preventing the vehicle from slipping out the road curvature by using two active control actions: the front steering angle and the brake steering force. Bacterial forging optimization algorithm is used to adjust the parameters weights of the proposed controller. Simulation resul
... Show MoreIn general, path-planning problem is one of most important task in the field of robotics. This paper describes the path-planning problem of mobile robot based on various metaheuristic algorithms. The suitable collision free path of a robot must satisfies certain optimization criteria such as feasibility, minimum path length, safety and smoothness and so on. In this research, various three approaches namely, PSO, Firefly and proposed hybrid FFCPSO are applied in static, known environment to solve the global path-planning problem in three cases. The first case used single mobile robot, the second case used three independent mobile robots and the third case applied three follow up mobile robot. Simulation results, whi
... Show More