Cutaneous Leishmaniasis (CL) is an endemic disease and one of the major health problems in Iraq. Leishmania tropica is known as the causative agent of Cutaneous Leishmaniasis in Baghdad.The classical serological methods of diagnosing leishmaniasis is a poor sensitivity especially for the sub genus and time consuming Here we have investigated two primer pairs, one specific for Leishmania as genus and the primer specific for the species of L. tropica to be detected by polymerase chain reaction (PCR).Samples were collected from (AL-karama Teaching Hospital) and whole genomic DNA was extracted from axenic promastigotes.The extracted DNA was amplified by PCRwith two KDNA primer pairs, for genus specific (13A/13B) and (Lmj4/Uni21) to identify the specific species of cutaneous leishmaniasis. Amplified PCR products then run on gel electrophoresis and two visible bands of the two primers were seen, 120 and 800 bp, respectively. Our results indicate that the PCR technique is sensitive and specific for the detection and differentiation of cutaneous leishmaniasis agents and can be recommended to applied in hospitals and research centers.
Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimum err
... Show MoreWith the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect
... Show MoreData mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu
... Show MoreIn the present paper, Arabic Character Recognition Edge detection method based on contour and connected components is proposed. First stage contour extraction feature is introduced to tackle the Arabic characters edge detection problem, where the aim is to extract the edge information presented in the Arabic characters, since it is crucial to understand the character content. The second stage connected components appling for the same characters to find edge detection. The proposed approach exploits a number of connected components, which move on the character by character intensity values, to establish matrix, which represents the edge information at each pixel location .
... Show MoreThe objective of this research is employ the special cases of function trapezoid in the composition of fuzzy sets to make decision within the framework of the theory of games traditional to determine the best strategy for the mobile phone networks in the province of Baghdad and Basra, has been the adoption of different periods of the functions belonging to see the change happening in the matrix matches and the impact that the strategies and decision-making available to each player and the impact on societ
... Show MoreInformation centric networking (ICN) is the next generation of internet architecture with its ability to provide in-network caching that make users retrieve their data efficiently regardless of their location. In ICN, security is applied to data itself rather than communication channels or devices. In-network caches are vulnerable to many types of attacks, such as cache poisoning attacks, cache privacy attacks, and cache pollution attacks (CPA). An attacker floods non-popular content to the network and makes the caches evict popular ones. As a result, the cache hit ratio for legitimate users will suffer from a performance degradation and an increase in the content’s retrieval latency. In this paper, a popularity variation me
... Show MoreA simple, low cost and rapid flow injection turbidimetric method was developed and validated for mebeverine hydrochloride (MBH) determination in pharmaceutical preparations. The developed method is based on forming of a white, turbid ion-pair product as a result of a reaction between the MBH and sodium persulfate in a closed flow injection system where the sodium persulfate is used as precipitation reagent. The turbidity of the formed complex was measured at the detection angle of 180° (attenuated detection) using NAG dual&Solo (0-180°) detector which contained dual detections zones (i.e., measuring cells 1 & 2). The increase in the turbidity of the complex was directly proportional to the increase of the MBH concentration
... Show MoreIn this study, a genetic algorithm (GA) is used to detect damage in curved beam model, stiffness as well as mass matrices of the curved beam elements is formulated using Hamilton's principle. Each node of the curved beam element possesses seven degrees of freedom including the warping degree of freedom. The curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory. The identification of damage is formulated as an optimization problem, binary and continuous genetic algorithms
(BGA, CGA) are used to detect and locate the damage using two objective functions (change in natural frequencies, Modal Assurance Criterion MAC). The results show the objective function based on change in natural frequency i