A global pandemic has emerged as a result of the widespread coronavirus disease (COVID-19). Deep learning (DL) techniques are used to diagnose COVID-19 based on many chest X-ray. Due to the scarcity of available X-ray images, the performance of DL for COVID-19 detection is lagging, underdeveloped, and suffering from overfitting. Overfitting happens when a network trains a function with an incredibly high variance to represent the training data perfectly. Consequently, medical images lack the availability of large labeled datasets, and the annotation of medical images is expensive and time-consuming for experts. As the COVID-19 virus is an infectious disease, these datasets are scarce, and it is difficult to get large datasets due to patient privacy. To address these issues by augmenting the COVID-19 dataset. In this paper, we adjusted conditional generation adversarial networks (CGAN) along with traditional augmentation (TA). The augmented dataset includes 6550 X-ray images that can be used to improve the diagnosis of COVID-19, and we have implemented five models of transfer learning procedures (DTL). The proposed procedures yielded high detection accuracy of 95%, 93%, 92%, and 92% in only ten epochs, for VGG-16, VGG-19, Xception, and Inception, respectively, and a custom convolutional neural network. Experimental results prove that our model achieves a high detection accuracy of up to 96% compared to other models. We hope it can be applied in other fields with rare data sets.
In this paper we present a method to analyze five types with fifteen wavelet families for eighteen different EMG signals. A comparison study is also given to show performance of various families after modifying the results with back propagation Neural Network. This is actually will help the researchers with the first step of EMG analysis. Huge sets of results (more than 100 sets) are proposed and then classified to be discussed and reach the final.
The brain's magnetic resonance imaging (MRI) is tasked with finding the pixels or voxels that establish where the brain is in a medical image The Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents. Next, the lines are separated into characters. In the Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents case of fonts with a fixed MRI width, the gaps are analyzed and split. Otherwise, a limited region above the baseline is analyzed, separated, and classified. The words with the lowest recognition score are split into further characters x until the result improves. If this does not improve the recognition s
... Show MoreIn order to accurately diagnose Entamoeba spp., this study's major goal was to develop a proof-of-concept method for simultaneously detecting pathogenic and non-pathogenic amoebae using DNA. During amoebiasis, two diagnostic techniques (microscopic inspection and PCR techniques with particular primers) were evaluated. About 100 feces samples from Fallujah individuals who had clinical symptoms were taken. The outcome reveals that only 20 samples have Entamoeba spp. infections. According to this study, the two species had distinct infection percentages. Entamoeba histolytica was the most prevalent infection, at 85%, followed by Entamoeba dispar, which was 15% of all the Entamoeba-positive sampl
... Show MoreConditional logistic regression is often used to study the relationship between event outcomes and specific prognostic factors in order to application of logistic regression and utilizing its predictive capabilities into environmental studies. This research seeks to demonstrate a novel approach of implementing conditional logistic regression in environmental research through inference methods predicated on longitudinal data. Thus, statistical analysis of longitudinal data requires methods that can properly take into account the interdependence within-subjects for the response measurements. If this correlation ignored then inferences such as statistical tests and confidence intervals can be invalid largely.
Vaccination against novel Coronavirus (SARS-CoV-2) become highly recommended. In Iraq, three vaccines are available. They are Pfizer-Biontech, Oxford-AstraZenica, and Sino harm vaccines. A cross-sectional retrospective study was performed to a total of 2399 individual who are vaccinated with one of the available vaccines. People who are infected with Covid-19 before and/or after vaccination of either studied SARS-CoV-2 vaccines were also involved in this study (1175 case). Signs and symptoms have been reported for each of confirmed positive cases of Coronavirus disease. Statistical data analyses were applied to reveal the effect of different SARS-CoV-2 vaccines on the incidence of novel coronavirus disease among Iraqi population. Also, the
... Show MoreThe Artificial Neural Network methodology is a very important & new subjects that build's the models for Analyzing, Data Evaluation, Forecasting & Controlling without depending on an old model or classic statistic method that describe the behavior of statistic phenomenon, the methodology works by simulating the data to reach a robust optimum model that represent the statistic phenomenon & we can use the model in any time & states, we used the Box-Jenkins (ARMAX) approach for comparing, in this paper depends on the received power to build a robust model for forecasting, analyzing & controlling in the sod power, the received power come from
... Show MoreThe paper presents a neural synchronization into intensive study in order to address challenges preventing from adopting it as an alternative key exchange algorithm. The results obtained from the implementation of neural synchronization with this proposed system address two challenges: namely the verification of establishing the synchronization between the two neural networks, and the public initiation of the input vector for each party. Solutions are presented and mathematical model is developed and presented, and as this proposed system focuses on stream cipher; a system of LFSRs (linear feedback shift registers) has been used with a balanced memory to generate the key. The initializations of these LFSRs are neural weights after achiev
... Show MoreA .technology analysis image using crops agricultural of grading and sorting the test to conducted was experiment The device coupling the of sensor a with camera a and 75 * 75 * 50 dimensions with shape cube studio made-factory locally the study to studio the in taken were photos and ,)blue-green - red (lighting triple with equipped was studio The .used were neural artificial and technology processing image using maturity and quality ,damage of fruits the of characteristics external value the quality 0.92062, of was value regression the damage predict to used was network neural artificial The .network the using scheme regression a of means by 0.98654 of was regression the of maturity and 0.97981 of was regression the of .algorithm Marr
... Show MoreSolar tracking systems used are to increase the efficiency of the solar cells have attracted the attention of researchers recently due to the fact that the attention has been directed to the renewable energy sources. Solar tracking systems are of two types, Maximum Power Point Tracking (MPPT) and sun path tracking. Both types are studied briefly in this paper and a simple low cost sun path tracking system is designed using simple commercially available component. Measurements have been made for comparison between fixed and tracking system. The results have shown that the trackin
Developed countries are facing many challenges to convert large areas of existing services to electronic modes, reflecting the current nature of workflow and the equipment utilized for achieving such services. For instance, electricity bill collection still tend to be based on traditional approaches (paper-based and relying on human interaction) making them comparatively time-consuming and prone to human error.
This research aims to recognize numbers in mechanical electricity meters and convert them to digital figures utilizing Optical Character Recognition (OCR) in Matlab. The research utilized the location of red region in color electricity meters image to determine the crop region that contain the meters numbers, then
... Show More