Preferred Language
Articles
/
ijs-7259
Automatic Diagnosis of Coronavirus Using Conditional Generative Adversarial Network (CGAN)
...Show More Authors

     A global pandemic has emerged as a result of the widespread coronavirus disease (COVID-19). Deep learning (DL) techniques are used to diagnose COVID-19 based on many chest X-ray. Due to the scarcity of available X-ray images, the performance of DL for COVID-19 detection is lagging, underdeveloped, and suffering from overfitting. Overfitting happens when a network trains a function with an  incredibly high variance to represent the training data perfectly. Consequently, medical images lack the availability of large labeled datasets, and the annotation of medical images is expensive and time-consuming for experts. As the COVID-19 virus is an infectious disease, these datasets are scarce, and it is difficult to get large datasets due to patient privacy. To address these issues by augmenting the COVID-19 dataset. In this paper, we adjusted conditional generation adversarial networks (CGAN) along with traditional augmentation (TA). The augmented dataset includes 6550 X-ray images that can be used to improve the diagnosis of COVID-19, and we have implemented five models of transfer learning procedures (DTL). The proposed procedures yielded high detection accuracy of 95%, 93%, 92%, and 92% in only ten epochs, for VGG-16, VGG-19, Xception, and Inception, respectively, and a custom convolutional neural network. Experimental results prove that our model achieves a high detection accuracy of up to 96% compared to other models. We hope it can be applied in other fields with rare data sets.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed May 03 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Designing Feed Forward Neural Network for Solving Linear VolterraIntegro-Differential Equations
...Show More Authors

The aim of this paper, is to design multilayer Feed Forward Neural Network(FFNN)to find the approximate solution of the second order linear Volterraintegro-differential equations with boundary conditions. The designer utilized to reduce the computation of solution, computationally attractive, and the applications are demonstrated through illustrative examples.

View Publication Preview PDF
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Planner And Development
The "actor network theory" approach in dealing with landscapes in historical centers
...Show More Authors

The historical center's landscape suffers from neglect, despite their importance and broad capabilities in enhancing the cultural value of the historical center, as landscape includes many heterogeneous human and non-human components, material and immaterial, natural and manufactured, also different historical layers, ancient, modern and contemporary. Due to the difference in these components and layers, it has become difficult for the designer to deal with it. Therefore, the research was directed by following a methodology of actor-network theory as it deals with such a complex system and concerned with an advanced method to connect the various components of considering landscape as a ground that can include various elements and deal wi

... Show More
View Publication Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Influence of Design Efficiency of Water Supply Network Inside Building on its Optimum Usage: Review
...Show More Authors

The water supply network inside the building is of high importance due to direct contact with the user that must be optimally designed to meet the water needs of users.  This work aims to review previous research and scientific theories that deal with the design of water networks inside buildings, from calculating the amount of consumption and the optimal distribution of the network, as well as ways to rationalize the use of water by the consumer.  The process of pumping domestic water starts from water treatment plants to be fed to the public distribution networks, then reaching a distribution network inside the building till it is  provided to the user.  The design of the water supply network inside the building is

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
International Archives Of Medicine
The role of MRI in the diagnosis of intra articular knee derangement: A prospective study
...Show More Authors

View Publication Preview PDF
Crossref
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Diagnosis of medical errors and the responsibility of nursing staff reported in Sadr Teaching Hospital
...Show More Authors

The study aims to determine the responsibility of nursing staff for medical errors that accompany the surgery at the hospital , which is one of the important issues that the importance of determining the responsibility of landlords nursing medical errors in the hospital was the rationale in choosing the subject. Since study included cases of errors nursing staff of (22) case. While the checklist distributed to a sample of nursing Angel Group in Sadr Teaching Hospital 's (100) nurs According to the problem, the study in determining the responsibility of nursing staff for medical errors that are not important for the hospitals. Has shown results of the study agreement members of the study sample that the clarity of the power posses

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Mar 11 2019
Journal Name
Baghdad Science Journal
Solving Mixed Volterra - Fredholm Integral Equation (MVFIE) by Designing Neural Network
...Show More Authors

       In this paper, we focus on designing feed forward neural network (FFNN) for solving Mixed Volterra – Fredholm Integral Equations (MVFIEs) of second kind in 2–dimensions. in our method, we present a multi – layers model consisting of a hidden layer which has five hidden units (neurons) and one linear output unit. Transfer function (Log – sigmoid) and training algorithm (Levenberg – Marquardt) are used as a sigmoid activation of each unit. A comparison between the results of numerical experiment and the analytic solution of some examples has been carried out in order to justify the efficiency and the accuracy of our method.

         

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Sun Apr 26 2020
Journal Name
Iraqi Journal Of Science
Monotone Approximation by Quadratic Neural Network of Functions in Lp Spaces for p<1
...Show More Authors

Some researchers are interested in using the flexible and applicable properties of quadratic functions as activation functions for FNNs. We study the essential approximation rate of any Lebesgue-integrable monotone function by a neural network of quadratic activation functions. The simultaneous degree of essential approximation is also studied. Both estimates are proved to be within the second order of modulus of smoothness.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Tue Jan 09 2018
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Matching assessment of road network objects of volunteered geographic information
...Show More Authors

Recently new concepts such as free data or Volunteered Geographic Information (VGI) emerged on Web 2.0 technologies. OpenStreetMap (OSM) is one of the most representative projects of this trend. Geospatial data from different source often has variable accuracy levels due to different data collection methods; therefore the most concerning problem with (OSM) is its unknown quality. This study aims to develop a specific tool which can analyze and assess the possibility matching of OSM road features with reference dataset using Matlab programming language. This tool applied on two different study areas in Iraq (Baghdad and Karbala), in order to verify if the OSM data has the same quality in both study areas. This program, in general, consists

... Show More
Publication Date
Tue May 30 2023
Journal Name
Iraqi Journal Of Science
Improve The Fully Convolutional Network Accuracy by Levelset and The Deep Prior Method
...Show More Authors

     Deep learning techniques allow us to achieve image segmentation with excellent accuracy and speed. However, challenges in several image classification areas, including medical imaging and materials science, are usually complicated as these complex models may have difficulty learning significant image features that would allow extension to newer datasets. In this study, an enhancing technique for object detection is proposed based on deep conventional neural networks by combining levelset and standard shape mask. First, a standard shape mask is created through the "probability" shape using the global transformation technique, then the image, the mask, and the probability map are used as the levelset input to apply the image segme

... Show More
View Publication
Scopus Crossref
Publication Date
Sun Jul 01 2007
Journal Name
Journal Of The Faculty Of Medicine Baghdad
An appraisal of urine cytology in the diagnosis of transitional cell carcinoma of the urinary bladder
...Show More Authors

Background: Urine cytology has an acceptable sensitivity, & specificity that justifies its use in the current diagnostic protocol. In Iraq transitional cell carcinoma (TCC) constitute about 62.1 % of bladder cancer (which ranks the third according to the results of Iraqi Cancer Registry 1995-1997). Urine cytology used in the primary diagnosis, follow up, and in the screening programs of asymptomatic but high-risk patients.
Patients and methods: This study was conducted on 93 patients, diagnosed or clinically suspected to have TCC of the urinary bladder attending to the Urological department in ALKadhimiya Teaching Hospital, AL-Yarmouk Teaching Hospital, and Baghdad Medical City. During the p

... Show More
View Publication Preview PDF
Crossref