A global pandemic has emerged as a result of the widespread coronavirus disease (COVID-19). Deep learning (DL) techniques are used to diagnose COVID-19 based on many chest X-ray. Due to the scarcity of available X-ray images, the performance of DL for COVID-19 detection is lagging, underdeveloped, and suffering from overfitting. Overfitting happens when a network trains a function with an incredibly high variance to represent the training data perfectly. Consequently, medical images lack the availability of large labeled datasets, and the annotation of medical images is expensive and time-consuming for experts. As the COVID-19 virus is an infectious disease, these datasets are scarce, and it is difficult to get large datasets due to patient privacy. To address these issues by augmenting the COVID-19 dataset. In this paper, we adjusted conditional generation adversarial networks (CGAN) along with traditional augmentation (TA). The augmented dataset includes 6550 X-ray images that can be used to improve the diagnosis of COVID-19, and we have implemented five models of transfer learning procedures (DTL). The proposed procedures yielded high detection accuracy of 95%, 93%, 92%, and 92% in only ten epochs, for VGG-16, VGG-19, Xception, and Inception, respectively, and a custom convolutional neural network. Experimental results prove that our model achieves a high detection accuracy of up to 96% compared to other models. We hope it can be applied in other fields with rare data sets.
We propose a novel strategy to optimize the test suite required for testing both hardware and software in a production line. Here, the strategy is based on two processes: Quality Signing Process and Quality Verification Process, respectively. Unlike earlier work, the proposed strategy is based on integration of black box and white box techniques in order to derive an optimum test suite during the Quality Signing Process. In this case, the generated optimal test suite significantly improves the Quality Verification Process. Considering both processes, the novelty of the proposed strategy is the fact that the optimization and reduction of test suite is performed by selecting only mutant killing test cases from cumulating t-way test ca
... Show MoreWith the development of communication technologies, the use of wireless systems in biomedical implanted devices has become very useful. Bio-implantable devices are electronic devices which are used for treatment and monitoring brain implants, pacemakers, cochlear implants, retinal implants and so on. The inductive coupling link is used to transmit power and data between the primary and secondary sides of the biomedical implanted system, in which efficient power amplifier is very much needed to ensure the best data transmission rates and low power losses. However, the efficiency of the implanted devices depends on the circuit design, controller, load variation, changes of radio frequency coil’s mutual displacement and coupling coef
... Show MoreThe research focuses on determination of best location of high elevated tank using the required head of pump as a measure for this purpose. Five types of network were used to find the effect of the variation in the discharge and the node elevation on the best location. The most weakness point was determined for each network. Preliminary tank locations were chosen for test along the primary pipe with same interval distance. For each location, the water elevation in tank and pump head was calculated at each hour depending on the pump head that required to achieve the minimum pressure at the most weakness point. Then, the sum of pump heads through the day was determined. The results proved that there is a most economical lo
... Show MoreThe main objective of this study is to determine the suitable excitation wavelengths for
urine components reaching to select the suitable lasers to execute the auto fluorescence due to their
high intensities. The auto fluorescence was measured at 305, 325 and 350 nm excitation wavelengths
for eleven urine samples which were also analyzed by conventional methods (chemical and
microscopic examination). Data manipulation using Matlab package programming language showed
that urine sample with normal chemical and biological components have emission peaks which are
different from the infected urine samples. Despite the complexity of the composition of urine,
fluorescence maxima can be observed. Most likely, the peaks obser
The main objective of this study is to determine the suitable excitation wavelengths for
urine components reaching to select the suitable lasers to execute the auto fluorescence due to their
high intensities. The auto fluorescence was measured at 305, 325 and 350 nm excitation wavelengths
for eleven urine samples which were also analyzed by conventional methods (chemical and
microscopic examination). Data manipulation using Matlab package programming language showed
that urine sample with normal chemical and biological components have emission peaks which are
different from the infected urine samples. Despite the complexity of the composition of urine,
fluorescence maxima can be observed. Most likely, the peaks obser
To explore the durability of some local species of wood to fungal deterioration among the
storage period, this research has conducted on three species Eufcalyptus cammaldulensis,
Juglans regia, presence of some genus of fungi; Aspergillus, Penicillium,Botryoderma,
Chaetomium, Phoma, Cladosporium and Pacilomyces in different intensities.
The two fungi Aspergillus and Penicillium appeared more dominants than others, therefore
they were chosen for the pathogenicity test. The results showed that the two species of fungi
preferred Juglans wood firstly were the size of infection was more than 10 times of any of the
other two woods. Eucalyptus showed similar response to that of Morus, but with Aspergillus
it was few bett
In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respectively. For
... Show MoreBackground: Strain imaging assessing regional myocardial deformation and can be used to quantify regional myocardial function and differentiate between ischemic and non ischemic myocardium.
Objectives: to assess sensitivity and specificity of strain imaging in detection of coronary artery disease in comparison with coronary angiography.
Patients and Methods: ninety six patients were referred to Ibn albitar center for cardiac surgery, Baghdad, Iraq with symptoms of coronary artery disease for a period between June 2014 and April 2015, all of whom were evaluated by two dimensional echocardiography and all were found to have good left ventricular systolic function with no regiona
In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respe
... Show MoreThis study was conducted in College of Science \ Computer Science Department \ University of Baghdad to compare between automatic sorting and manual sorting, which is more efficient and accurate, as well as the use of artificial intelligence in automated sorting, which included artificial neural network, image processing, study of external characteristics, defects and impurities and physical characteristics; grading and sorting speed, and fruits weigh. the results shown value of impurities and defects. the highest value of the regression is 0.40 and the error-approximation algorithm has recorded the value 06-1 and weight fruits fruit recorded the highest value and was 138.20 g, Gradin