In this work the Aluminum plasma in Air produced by Nd: YAG pulsed laser, (λ = 1064 nm, τ = 6 ns) has been studied with a repletion rate of 10 Hz. The laser interaction in Al target (99.99%) under air atmosphere generates plasma, which is produced at room temperature; with variation in the energy laser from 600-900 mJ. The electron temperature and the electron density have been determined by optical emission spectroscopy and by assuming a local thermodynamic equilibrium (LTE) of the emitting species. Finally the electron temperature was calculated by the Boltzmann plot from the relative intensities of spectral lines and electron density was calculated by the Stark-broadening of emission line.
The reaction of LAs-Cl8 : [ (2,2- (1-(3,4-bis(carboxylicdichloromethoxy)-5-oxo-2,5dihydrofuran-2-yl)ethane – 1,2-diyl)bis(2,2-dichloroacetic acid)]with sodium azide in ethanol with drops of distilled water has been investigated . The new product L-AZ :(3Z ,5Z,8Z)-2azido-8-[azido(3Z,5Z)-2-azido-2,6-bis(azidocarbonyl)-8,9-dihydro-2H-1,7-dioxa-3,4,5triazonine-9-yl]methyl]-9-[(1-azido-1-hydroxy)methyl]-2H-1,7-dioxa-3,4,5-triazonine – 2,6 – dicarbonylazide was isolated and characterized by elemental analysis (C.H.N) , 1H-NMR , Mass spectrum and Fourier transform infrared spectrophotometer (FT-IR) . The reaction of the L-AZ withM+n: [ ( VO(II) , Cr(III) ,Mn(II) , Co(II) , Ni(II) , Cu(II) , Zn(II) , Cd(II) and
... Show MoreA large amount of thermal energy is generated from burning hazardous chemical wastes, and the temperature of the flue gases in hazardous waste incinerators reaches up to (1200 °C). The flue gases are cooled to (40°C) and are treated before emission. This thermal energy can be utilized to produce electrical power by designing a system suitable for dangerous flue gases in the future depending on the results of much research about using a proto-type small steam power plant that uses safe fuel to study and develop the electricity generation process with water tube boiler which is manufactured experimentally with theoretical development for some of its parts which are inefficient in experimental work. The studied system gen
... Show MoreIn this paper the wind data that is measured for 12 months (January to December 2011) at Al-Hay district of Wasit province, southern IRAQ country has been analyzed statistically. The wind speed at heights of 10 m above ground level was measured for every 10 minutes interval. The statistical analysis of wind data was performed using WAsP software which is based on Weibull distributions. The Weibull shape and scale parameters is obtained and used in this paper statistics. The achieved results demonstrated that the study area has Annual Mean Energy Production (AMEP) about 219.002 MWh. The computations have been performed on 70m hub‟s height of the turbine and on Earth surface roughness length (0.0, 0.03, 0.1, 0.4, 1.5) m respectively.
Ab – initio density function theory (DFT) calculations coupled with Large Unit Cell (LUC) method were carried out to evaluate the electronic structure properties of III-V zinc blend (GaAs). The nano – scale that have dimension (1.56-2.04)nm. The Gaussian 03 computational packages has been employed through out this study to compute the electronic properties include lattice constant, energy gap, valence and conduction band width, total energy, cohesive energy and density of state etc. Results show that the total energy and energy gap are decreasing with increase the size of nano crystal . Results revealed that electronic properties converge to some limit as the size of LUC increase .
In the present study, composites were prepared by Hand lay-up molding and investigated. The composites constituents were epoxy resin as the matrix, 6% volume fractions of Glass Fibers (G.F) as reinforcement and 3%, 6% of industrial powder (Calcium Carbonate CaCO3, Potassium Carbonate K2CO3 and Sodium Carbonate Na2CO3) as filler. Density, water absorption, hardness test, flexural strength, shear stress measurements and tests were conducted to reveal their values for each type of composite material. The results showed that the non – reinforced epoxy have lower properties than composites material. Measured density results had show an incremental increase with volume fraction increase
... Show MoreIn this work preparation of antireflection coating with single layer of MgO using pulsed laser deposition (PLD) method which deposit on glass substrate with different thicknesses (90 and 100) nm annealed at temperature 500 K was done.
The optical and structural properties (X-ray diffraction) have been determined. The optical reflectance was computed with the aid of MATLAB over the visible and near infrared region. Results shows that the best result obtained for optical performance of AR'Cs at 700 shots with thickness 90 nm nanostructure single layer AR'Cs and low reflection at wavelength 550 nm.
Films of PMMA and copper sulphate doped PMMA have been prepared by casting method. Absorbance and transmittance spectra were recorded in the wavelength range (300-900) nm in order to calculate, single oscillator energy, dispersion energy, average oscillator strength, the refractive index at infinite wavelength, M-1 and M -3 moments of the optical spectra, it was found that all these parameters were effected by doping.
The structural, optical and photoelectrical properties of fabricated diffusion heterojunction (HJ) solar cell, from n-type c-Si wafer of [400] direction with Boron, has been studied. AgAl alloys was used because of its properties that affect as a good connection materials. TiO2 has been used as a reflecting layer to increase the absorption radiation. The HJ has direct allowed energy gap equal to 3.1 eV. The c-Si/B HJ solar cell yielded has an active area conversion efficiency of 16.4% with an open circuit voltage of (Voc) 0.592V, short circuit current (Isc) of 2.042mA, fill factor (F.F) of 0.682 and % =10.54.
Numerical simulations are carried out to investigate the possibility of observing
extrasolar planet nearby star via optical telescopes. Several techniques are
considered in this study in order to quantitatively assess their quality in suppressing
the wings of the point spread function of optical telescope of a reference star. The
optical telescope with circular Gaussian shape aperture reveals extrasolar planet
even with contrast ratio 10-7 while the square Gaussian shape aperture reveals the
planet with 10-5.
Fe3O4:Ce thin films were deposited on glass and Si substrates by Pulse Laser Deposition Technique (PLD). Polycrystalline nature of the cubic structure with the preferred orientation of (311) are proved by X-ray diffraction. The nano size of the prepared films are revealed by SEM measurement. Undoped Iron oxide and doped with different concentration of Ce films have direct allowed transition band gap with 2.15±0.1 eV which is confirmed by PL Photoluminescence measurements. The PL spectra consist of the emission band located at two sets of peaks, set (A) at 579±2 nm , and set (B) at 650 nm, respectively when it is excited at an excitation wavelength of 280 nm at room temperature. I-V characteristics have been studied in the dark and under v
... Show More