In present work, the nonlinear optical properties of pure polyaniline and Ag/polyaniline nanocomposite thin films, deposited by plasma jet on glass substrate, were studied through open and closed Z-scan technique using pulse second harmonic Nd:YAG laser of wavelength 532nm, pulse duration of 30 ns and input energy 30mJ. The nonlinear optical properties of pure polyaniline thin films and silver polyaniline nanocomposite thin films prepared at constant gas flow rate 1lm-1 and different silver weight concentration 4, 5, and 10% were studied. The closed aperture Z-scan data indicates that the sign of the refraction nonlinearity is negative for pure polyaniline thin films n2 =11×10-3 cm2/MW and positive nonlinearity for Ag/polyaniline nanocomposite thin films, n2=72×10-3, 66×10-3 and 96×10-3 cm2/MW for silver weight concentration 4, 5, and 10% respectively. The open Z-scan measurements show two photons absorption β=75×103 cm/MW for 4%wt silver concentration and show saturated absorption for pure polyaniline, 5 and 10%wt silver concentration. The transmission spectra obtained by UV-Visible absorption spectra exhibit interference fringes, for the samples with 4% and 5%wt silver concentration which is an indication of the good uniformity and homogeneity of the films.
Silver nanoparticles (Ag-NPs) have been prepared using the electro-chemical
method. The experimental setup of this technique consist of two electrodes of pure
silver (99.2 %), the applied voltage on the electrodes is 20 V and the current through
the colloidal was about 0.4 Amp. The silver nanoparticles crystallization has been
studied; the crystalline structure appears Face center Cubic. The optical properties of
silver nanoparticles are strongly affected by the Local Surface Plasmon Resonance
(LSPR). The wavelength of maximum absorption band for an Ag NPs have a range
(~350nm-550nm).
In this study lattice parameters, band structure, and optical characteristics of pure and V-doped ZnO are examined by employing (USP) and (GGA) with the assistance of First-principles calculation (FPC) derived from (DFT). The measurements are performed in the supercell geometry that were optimized. GGA+U, the geometrical structures of all models, are utilized to compute the amount of energy after optimizing all parameters in the models. The volume of the doped system grows as the content of the dopant V is increased. Pure and V-doped ZnO are investigated for band structure and energy bandgaps using the Monkhorst–Pack scheme's k-point sampling techniques in the Brillouin zone (G-A-H-K-G-M-L-H). In the presence of high V content, the ban
... Show MoreCopper (1) oxide nanoparticles together with matrix polymers of polyvinyl alcohol (PVA) and polyaniline (PANI) composite films were synthesized, as these materials are of importance in optoelectronic applications. Nanoparticles of Cu2O were produced by chemical precipitation. Polymerization of aniline was carried out through polymerization in an acidic medium. Structural, thermal, and optical properties of PVA+PANI/Cu2O nanocomposite were inspected by x-ray diffraction (XRD), scanning electron microscopy (SEM), fourier-transform infrared (FTIR), differential scanning calorimeter (DSC) and ultraviolet-visible spectroscopy (UV-Vis spectroscopy). X-ray diffraction peaks at 29.53°, 36.34°, and 42.22° indicated the
... Show MoreIn this work, polyvinylpyrrolidone (PVP)/ Multi-walled carbon nanotubes (MWCNTs) nanocomposites were prepared with two concentrations of MWCNTs by casting method. Morphological, structural characteristics and electrical properties were investigated. The state of MWCNTs dispersion in a PVP matrix was indicated by Field Effect-Scanning Electron Microscopy (FESEM) which showed a uniform dispersion of MWCNTs within the PVP matrix. X-ray Diffraction (XRD) indicate strong bonding of carbonyl groups of PVP composite chains with MWCNTs. Fourier transfer infrared (FTIR) studies shows characteristics of various stretching and bending vibration bands, as well as shifts in some band locations and intensity changes in others. Hall effect was studied
... Show MoreIn this work, polyvinylpyrrolidone (PVP)/ Multi-walled carbon nanotubes (MWCNTs) nanocomposites were prepared with two concentrations of MWCNTs by casting method. Morphological, structural characteristics and electrical properties were investigated. The state of MWCNTs dispersion in a PVP matrix was indicated by Field Effect-Scanning Electron Microscopy (FESEM) which showed a uniform dispersion of MWCNTs within the PVP matrix. X-ray Diffraction (XRD) indicate strong bonding of carbonyl groups of PVP composite chains with MWCNTs. Fourier transfer infrared (FTIR) studies shows characteristics of various stretching and bending vibration bands, as well as shifts in some band locations and intensity changes in others. Hall effect was stu
... Show MoreTernary thin films have been clearly deposit using fully computerized system of spray pyrolysis technique onto glass substrates maintained at 310±5 °C. A mixture of an aqueous solution of thiourea, tin chloride dehydrate and copper chloride was used as spraying liquid. The optimumvolumetric ratio of mixing was found to be [S/(Cu+Sn)=1] at pH =1.5, in the present work. XRD examination was revealed CTS in a monoclinic phase. Number platform speeds were employed in the spraying process. XRD peaks were described at 2? = 28.39°, 33.02°, 47.34°, and 56.39° corresponding to , , , and , respectively. The FTIR investigations were certified a numeral of the chemical bond of Cu-, Sn- and S-. The grain size was observed in the range of nanosiz
... Show MoreIn this work, study the optical properties of composites consisting of poly Methyl Methacrylate and Berry Paper Mulberry. The samples of composites were prepared using casting method .The Berry Paper Mulberry (BPM) was added by different concentrations are (0, 2, 4 and 6)wt.%. The optical properties of composites have been studied in the wavelength range (200-800)nm. The absorption coefficient ,energy gap, refractive index, extinction coefficient and dielectric constants have been determined. The results show that the optical constants change with increase of BPM concentrations .
The CdSe pure films and doping with Cu (0.5, 1.5, 2.5, 4.0wt%) of thickness 0.9μm have been prepared by thermal evaporation technique on glass substrate. Annealing for all the prepared films have been achieved at 523K in vacuum to get good properties of the films. The effect of Cu concentration on some of the electrical properties such as D.C conductivity and Hall effect has been studied.
It has been found that the increase in Cu concentration caused increase in d.c conductivity for pure CdSe 3.75×10-4(Ω.cm)-1 at room temperatures to maximum value of 0.769(Ω.cm)-1 for 4wt%Cu.All films have shown two activation energies, where these value decreases with increasing doping ratio. The maximum value of activation energy was (0.319)eV f