This work highlights the estimation of the Al-Khoser River water case that disposes of its waste directly into the Tigris River within Mosul city. Furthermore, the work studies the effects of environmental and climate change and the impact of pollution resulting from waste thrown into the Al-Khoser River over the years. Al-Khoser River is located in the Northern Mesopotamia of Mosul city. This study aims to detect the polluted water area and the polluted surrounding area. Temporal remote sensing data of different Landsat generations were considered in this work, specifically Enhanced Thematic Mapper Plus of 2000 and Operational Land Imager of 2015. The study aims to measure the amount of pollution in the study area over 15 years using a supervised classification approach and other tools in ERDAS Imagine Software version 2014. Supervised classification is favored for remote sensing data processing because it contains different digital image processing methods. It is noticed by applying to preprocess and post-processing techniques adopted in the polluted section of Al-Khoser River and monitoring the changes in the objects around it. Hence, the river’s water has been classified into clear water and contaminated water, which shows the impact of pollution over the years. The analysis detected a polluted area in the river that enlarged over the years 2000 to 2015 from 4.139 km² to 21.45 km², respectively. The study showed the differences in the size of objects around the river. The study concludes that daily wastes produced by the residential areas through which Al-Khoser and Tigris rivers pass would cause the polluted sections of the river to increase.
Energy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the
... Show MoreMany isolated rural communities are located in regions where there is an abundant and reliable supply of solar energy, but where the distance to the nearest power station is many tens or even hundreds of kilometre. It is therefore mainly in these areas that rural electrification is now being provided by PV generators. since Stand-Alone PV generator can offer the most cost-effective and reliable option for providing power needed in remote places. Accordingly these isolated rural canters are fitted with PV for lighting, a refrigerator, a television and socket to supply kitchen appliances
Establishing complete and reliable coverage for a long time-span is a crucial issue in densely surveillance wireless sensor networks (WSNs). Many scheduling algorithms have been proposed to model the problem as a maximum disjoint set covers (DSC) problem. The goal of DSC based algorithms is to schedule sensors into several disjoint subsets. One subset is assigned to be active, whereas, all remaining subsets are set to sleep. An extension to the maximum disjoint set covers problem has also been addressed in literature to allow for more advance sensors to adjust their sensing range. The problem, then, is extended to finding maximum number of overlapped set covers. Unlike all related works which concern with the disc sensing model, the cont
... Show MoreThis study aims to identfy virtual plastic art exhibitions in light of the challenges of the Corona pandemic. It used a descriptive analytical method through several questions and examining future challenges via the Internet in publishing virtual plastic art exhibitions in many parts of the world in light of the challenges of the Corona pandemic. For that, it used Arab and foreign references.
The study reached many results, the most important of which are: The detection of virtual reality applications and their impact on the plastic arts exhibitions sector. Besides, the insights gained from future art gallery research with VR technology could provide direct and practical value for this sector. By using a technology, similar to the “
Lighting is a very important element of treatment if the color contains many imaging system (digital cameras) and the unit of light and the light within these units are not strong , but usefel when the light is low , in different lighting intensities conditions image quality will not persist good enough and image may become dark or slightly exposed to light which leads to lower the details in image where we can not modify contrast or light ness to compensate thr decrease without losing the light and dark deatials . So we went in this research to study the variation colored texts written on the painting and lighting cases of non –regular ( a few) and different distances . As the diversity of these texts written on the board a
... Show MoreIn this paper, a hybrid image compression technique is introduced that integrates discrete wavelet transform (DWT) and linear polynomial coding. In addition, the proposed technique improved the midtread quantizer scheme once by utilizing the block based and the selected factor value. The compression system performance showed the superiority in quality and compression ratio compared to traditional polynomial coding techniques.
Intrusion-detection systems (IDSs) aim at detecting attacks against computer systems and networks or, in general, against information systems. Most of the diseases in human body are discovered through Deoxyribonucleic Acid (DNA) investigations. In this paper, the DNA sequence is utilized for intrusion detection by proposing an approach to detect attacks in network. The proposed approach is a misuse intrusion detection that consists of three stages. First, a DNA sequence for a network traffic taken from Knowledge Discovery and Data mining (KDD Cup 99) is generated. Then, Teiresias algorithm, which is used to detect sequences in human DNA and assist researchers in decoding the human genome, is used to discover the Shortest Tandem Repeat (S
... Show MoreRegarding the security of computer systems, the intrusion detection systems (IDSs) are essential components for the detection of attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in real time. A major drawback of the IDS is their inability to provide adequate sensitivity and accuracy, coupled with their failure in processing enormous data. The issue of classification time is greatly reduced with the IDS through feature selection. In this paper, a new feature selection algorithm based on Firefly Algorithm (FA) is proposed. In addition, the naïve bayesian classifier is used to discriminate attack behaviour from normal behaviour in the network tra
... Show MoreThe importance of efficient vehicle detection (VD) is increased with the expansion of road networks and the number of vehicles in the Intelligent Transportation Systems (ITS). This paper proposes a system for detecting vehicles at different weather conditions such as sunny, rainy, cloudy and foggy days. The first step to the proposed system implementation is to determine whether the video’s weather condition is normal or abnormal. The Random Forest (RF) weather condition classification was performed in the video while the features were extracted for the first two frames by using the Gray Level Co-occurrence Matrix (GLCM). In this system, the background subtraction was applied by the mixture of Gaussian 2 (MOG 2) then applying a number
... Show More