Enol-Keto tautomerism in 1-[(E)-1,3-benzothiazol-2-ylazo]naphthalen-2-ol has been studied using the B3LYP functional of density functional theory (DFT) with 6-31G(d,p) basis set. Relative and absolute energies, transition state geometries (TS), dipole moments, entropies, enthalpies and Gibbs free energies, equilibrium constants (KT) and rate of tautomerization (kr) were calculated. Also, the computations of geometries and vibration frequencies for the tautomers were calculated and compared. The results of the calculations showed that the enol form is the most stable form than other isomers, this might be due to intra-hydrogen bonding. The TS1 activation energies for tautomer A ↔ B, tautomer A ↔ C and tautomer B ↔ C are 92.65, 199.56 and 225.71 kJ/mol respectively. The TS1 is lower than TS2 by 102 kJ/mol, showing that A ↔ B and B ↔ C paths are thermodynamic control and A ↔ C path is a kinetic control. The overall calculated KT ≈ 1, indicating that all tautomers present in significant proportions.
A series of adsorption laboratory experiments were conducted to study the sorption efficiency of bentonite in removal Cd from aqueous solutions. The bentonite was found to be a good receptive to the adsorption of Cd under specific laboratory conditions. The sorption capacity for Cd onto bentonite was investigated through the variation in pH and initial Cd2+ concentration. The sorption efficiency onto bentonite was examined as a function of pH, initial ion concentration, equilibrium reaction time and solid mass/ liquid volume ratio. The maximum sorption (%) of Cd from solutions were determined when solid to liquid ratio is 2 gm of bentonite versus 50 ml solution, the equilibrium reaction time is 50 minute at pH ranges from 5-7. The sorpti
... Show MoreBecause of the contaminants represented by heavy metals in the aquatic
environment have an adverse effects need to be addressed, therefore, a laboratory
simulation was conducted on Cd using kaolinite that collected from Ga’ara Formation
as considered as a natural sorbent material that can be used to remove heavy metals
from aqueous environments. Mineralogical study was conducted on kaolinite using
X-Ray diffraction (XRD), Scanning Electron Microscope (ESM) and Energy-
Dispersive X-ray Spectroscopy (EDS) for the purpose of investigating the microtexture.
It was found that kaolinite has pure phase of very fine grains with a very little
quantity of quartz and has a number of active sites for adsorption. Chemical an
The thermal properties (thermal transfer and thermal expansion coefficient) of the enhanced epoxy resin (MWCNT / x-TiO2) were studied by weight ratios with the values (0%, 3%, 5%, 7% and 10%) and a constant ratio of 3% of MWCNT. The ultrasonic technology was used to prepare the neat and composites which were then poured into Teflon molds according to standard conditions. Thermo-analyzer sensor technology was used to measure thermal transfer (thermal conductivity, thermal flow, thermal diffusion, thermal energy and heat resistance). The thermal conductivity, flow, and thermal conductivity values were increased sequentially by increasing the weight ratio of the filler while the results of stored energy values an
... Show MoreThis paper reports experimental and computational fluid dynamics (CFD) modelling studies to investigate the effect of the swirl intensity on the heat transfer characteristics of conventional and swirl impingement air jets at a constant nozzle-to-plate distance ( L = 2 D). The experiments were performed using classical twisted tape inserts in a nozzle jet with three twist ratios ( y = 2.93, 3.91, and 4.89) and Reynolds numbers that varied from 4000 to 16000. The results indicate that the radial uniformity of Nusselt number (Nu) of swirl impingement air jets (SIJ) depended on the values of the swirl intensity and the air Reynolds number. The results also revealed that the SIJ that was fitted with an insert of y = 4.89, which correspo
... Show MoreIn this paper, the effect of both rotation and magnetic field on peristaltic transport of Jeffery fluid through a porous medium in a channel are studied analytically and computed numerically. Mathematical modeling is carried out by utilizing long wavelength and low Reynolds number assumptions. Closed form expressions for the pressure gradient, pressure rise, stream function, velocity and shear stress on the channel walls have been computed numerically. Effects of Hartman number, time mean flow, wave amplitude, porosity and rotation on the pressure gradient, pressure rise, stream function, velocity and shear stress are discussed in detail and shown graphically. The results indicate that the effect of Hartman number, time mean flow, wave a
... Show MoreBackground: There is plenty of evidence
suggesting that involvement of several groups of
viruses in the development and / or acceleration of
Type 1 Diabetes Mellitus (T1DM).
Objective: To analyze the T- cell proliferation in
the presence of Coxsackie virus B5 (CVB5), Polio
and Adenovirus antigens in addition to assessment
of Interferon- gamma (IFN-γ), Interleukins (IL-10
and IL-6).
Methods: In 60 Iraqi T1DM children with recent
onset of T1DM, Lymphocyte proliferation was
analyzed using Methylthiazol tetrazolium (MTT)
assay by culturing Peripheral Blood Lymphocytes
(PBLs) with Coxsackie Virus B5 (CVB5),
Adenovirus, and Polio vaccine. Serum Interferon-γ,
IL-10 and IL-6 were quantified by sandw
This paper is employed to discuss the effects of the magnetic field and heat transfer on the peristaltic flow of Rabinowitsch fluid through a porous medium in the cilia channel. The governing equations (mass, motion, and energy) are formulated and then the assumptions of long wavelength and low Reynold number are used for simplification. The velocity field, pressure gradient, temperature, and streamlines are obtained when the perturbation technique is applied to solve the nonlinear partial differential equations. The study shows that the velocity is decreased with increasing Hartmann number while it is decreased with increasing the porosity.
In this research, the mechanism of cracks propagation for epoxy/ chopped carbon fibers composites have been investigated .Carbon fibers (5%, 10%, 15%, and 20%) by weight were used to reinforce epoxy resin. Bending test was carried out to evaluate the flexural strength in order to explain the mechanism of cracks propagation. It was found that, the flexural strength will increase with increasing the percentage weight for carbon fibers. At low stresses, the cracks will state at the lower surface for the specimen. Increasing the stresses will accelerate the speed of cracks until fracture accorded .The path of cracks is changed according to the distributions of carbon fibers
In this study, an efficient photocatalyst for water splitting was developed. The Cr2O3 and TiO2 nanoparticles (Cr2O3-TNPs) nanocomposite with (Chitosan extract) was created using ecologically friendly methods, such as the impregnation technique as TiO2 exhibits nano spherical (TNPs) shape structure. According to the researchers, this nanocomposite material enhanced its ability to absorb ultraviolet light while also speeding up the recombination of photogenerated electrons and holes. The TNPs and prepared Cr2O3-TNPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive x-ray sp
... Show More