In this work, nanostructure porous silicon surface was prepared using electrochemical etching method under different current densities. I have studied the surface morphology and photoluminescence (PL) of three samples prepared at current densities 20, 30 and 40 mA/cm2 at fixed etching time 10 min. The atomic force microscopy (AFM) images of porous silicon showed that the nanocrystalline silicon pillars and voids over the entire surface has irregular and randomly distributed. Photoluminescence study showed that the emission peaks centered at approximately (600 – 612nm) corresponding energies (2.06 – 2.02eV).
While current-voltage characteristics shows, as the current density increase the current flow in the forward bias is decreasing, while the rectification ratio and ideality factor varied from one sample to another. Finally, as etching current density increases the built in potential (Vbi) decreases (Vbi= 0.95, 0.75 and 0.55 volt corresponding 20, 30 and 40 mA/cm2) respectively.
In this study, Mn-Ni Ferrite was prepared by using two composites of manganese ferrite ( MnFe2o4 ) and Nicle Ferrite ( NiFe2O4) tested by X-Ray diffraction (XRD) method. The dielectric constant (ðœ€Ì…) and the dielectric loss tangent (ð‘¡ð‘Žð‘› ð›¿) were studied for the ferrite system prepared at different frequencies (100, 200… and 5000 kHz). It was found that the values of (ðœ€Ì…) and (ð‘¡ð‘Žð‘› ð›¿) decrease with the increase of frequencies.
The electrical properties of Poly (ethylene oxide)-MnCl2 Composites were studied by using the impedance technique. The study was carried out as a function of frequency in the range from 10 Hz to 13 MHz and MnCl2 salt concentration ranged from 0% to 20% by weight. It was found that the dielectric constants and the dielectric loss of the prepared films increase with the increase of the MnCl2 concentration; The A.C. conductivity increases with the increase of the applied frequency, and the MnCl2 content in the composite membrane. Relaxation processes were observed to take place for composites which have a high salt concentration. The observed relaxation and polarization effects of the composite are mainly attributed to the dielectric
... Show MoreSnO2 thin films of different two thicknesses were prepared an glass substrate by DC magnetron sputtering. The crystal structure and orientation of the films were investigated by XRD patterns. All the deposited films are polycrystalline. The grain size was calculated as 25.35, 28.8 nm. Morphological and compositions of the films were performed by SEM and EDX analyses respectively. The films appeared compact and rougher surface in nature. The allowed direct band gap was evaluated as 3.85 eV, and other optical constants such as refractive index, extinction coefficient, real and imaginary parts of dielectric constants were determined from transmittance spectrum in the wavelength range (300-900) nm and also analyzed.
Abstract: The use of indirect, all-ceramic restorations has grown in popularity among dentists. Studies have demonstrated that for indirect ceramic restorations to be effective over time, cement and ceramic must be bonded in a stable manner. Chemical, mechanical, and laser irradiation are among the methods used to precondition ceramic surfaces in order to increase bond strength.The objective of the study: This study was performed to investigate the roughness values and surface topography of lithium disilicate glass-ceramic treated with conventional methods and different Er,Cr:YSGG, and fractional CO2 laser conditioning parameters.Material and methods:<
... Show MoreSUMMARY. – Nanocrystalline thin fi lms of CdS are deposited on glass substrate by chemical bath deposited technique using polyvinyl alcohol (PVA) matrix solution. Crystallite size of the nanocrystalline films are determining from broading of X-ray diffraction lines and are found to vary from 0.33-0.52 nm, an increase of molarity the grain size decreases which turns increases the band gap. The band gap of nanocrystalline material is determined from the UV spectrograph. The absorption edge and absorption coefficient increases when the molarity increases and shifted towards the lower wavelength.
The aim of this paper, study the effect of carbon nanotubes on the electrical properties of polyvinylchloride. Samples of polyvinylchloride carbon nanotubes composite prepared by using hot press technique. The weight percentages of carbon nanotubes are 0,5,10 and 20wt.%. Results showed that the D.C electrical conductivity increases with increasing of the weight percentages of carbon nanotubes. Also, the D.C electrical conductivity changed with increase temperature for different concentrations of carbon nanotubes. The activation energy of D.C electrical conductivity is decreased with increasing of carbon nanotubes concentration.
Mercury-lead-antimony based superconductors with the formula Hg0.5 Pb0.5xSbxBa2Ca2Cu3O8+δ (x=0, 0.10 and 0.15) have been prepared by useing three step solid state reaction processes. Electrical resistivity, using four probe technique, is used to find the transition temperature Tc. It is found from that sample Hg0.5 Pb0.5Ba2Ca2Cu3O8.437 is semiconductor , sample Hg0.5 Pb0.4Sb0.1Ba2Ca2Cu3O8.353 is normal state with metallic behaviors, while sample Hg0.5 Pb0.35Sb0.15Ba2Ca2Cu3O8.233 is superconducting state with critical transition temperature (Tc) is 126K. X-ray diffraction (XRD) analysis showed a tetragonal structure with decrease in the c-axis lattice constant for the samples doped with Sb as compared with these which have no Sb
... Show MorePure Polyaniline salt, and protonation PANI by H2SO4 were synthesized by electro-chemical oxidative polymerization of aniline with acidity of H2SO4. The solution was prepared in reaction temperature equal 291 K and the acidity of aqueous solution was 1 molarities. The prepared polyaniline was characterized by FT-IR, the result indicate that the intensity is increase with increasing of applied voltage. The dc conductivity has been measured for bulk polyaniline pure and doped in the form of compressed pellet with evaporated Ohmic Al electrodes in temperature range (303-423) K. The Eav energy of the thermal rate process of the electrical conductivity was determined. The results indicate that the dc conductivity of doped samples are two or t
... Show MoreA progression of Polyaniline (PANI) and Titanium dioxide (TiO2) nanoparticles (NPs) were prepared by an in-situ polymerization strategy within the sight of TiO2 NPs. The subsequent nanocomposites were analyzed using Fourier-transform infrared spectra (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-Ray Analysis (EDX) taken for the prepared samples. PANI/TiO2 nanocomposites were prepared by various compound materials (with H2SO4 0.3 M and without it, to compare the outcome of it) by the compound oxidation technique using ammonium persulfate (APS) as oxidant within the sight of ultrafine grade powder of TiO2 cooled in an ice bath.
... Show More