Preferred Language
Articles
/
ijs-7063
Morphology and Electrical Properties Study of Nanocrystalline Silicon Surface Prepared By Electrochemical Etching

In this work, nanostructure porous silicon surface was prepared using electrochemical etching method under different current densities. I have studied the surface morphology and photoluminescence (PL) of three samples prepared at current densities 20, 30 and 40 mA/cm2 at fixed etching time 10 min. The atomic force microscopy (AFM) images of porous silicon showed that the nanocrystalline silicon pillars and voids over the entire surface has irregular and randomly distributed. Photoluminescence study showed that the emission peaks centered at approximately (600 – 612nm) corresponding energies (2.06 – 2.02eV).
While current-voltage characteristics shows, as the current density increase the current flow in the forward bias is decreasing, while the rectification ratio and ideality factor varied from one sample to another. Finally, as etching current density increases the built in potential (Vbi) decreases (Vbi= 0.95, 0.75 and 0.55 volt corresponding 20, 30 and 40 mA/cm2) respectively.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Aug 31 2019
Journal Name
Iraqi Journal Of Physics
Effect of cation size on electrochemical properties of polymer electrolyte

This study investigates the ionic conduction dependence on the size of alkaline cations in gel polymer electrolytes based on double iodide can enhance by incorporating a salt having a bulky cation.

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Wed Feb 20 2019
Journal Name
Iraqi Journal Of Physics
Dielectrical and electrical properties of PVA-NaI composites

                The electrical characteristics of polyvinyl alcohol PVA doped with different concentrations (0, 1, 2, 3 and 4wt%) of sodium  iodide NaI powder were studied. The films are prepared using solution casting technique, in order to investigate the effect of sodium iodide NaI additions on the electrical properties of PVA host. The D.C conductivity measured by measuring the D.C electrical resistance using the Keithly Electrometer type 616C, and for different temperatures ranging from 30 – 70oC.

          The dielectric properties measured by measuring the capacitor and the loss

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Feb 20 2019
Journal Name
Iraqi Journal Of Physics
Structural and electrical properties of CuLayFe2-yO4 ferrites

        Ferrite with the general formula CuLayFe2-yO4 (where y=0.02, 0.04, 0.06, 0.08 and 0.1), were prepared by standard ceramic technique. The main cubic spinel structure phase for all samples was confirmed by x-ray diffraction patterns with the appearance of small amount of secondary phases. The lattice parameter results were 8.285-8.348 Å. X-ray density increased with La addition and showed values between 5.5826 – 5.7461gm/cm3. The Atomic Force Microscopy (AFM) showed that the average grain size was decreasing with the increase in La concentration. The Hall coefficient was found to be positive. It de

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Study of the electrical properties of Ion Beam Sputtered thin AlNiCo films

The electrical properties of the AlNiCo thin films with thickness (1000oA) deposited on glass substrates using Ion – Beam sputtering (IBS) technique under vacuum <10-6 torr have been studied . Also it studied the effect of annealing temperature from this films , It is found that the effective energy decrease with increase of temperature and the conductivity decrease with increase temperature 323oK but after this degree the conductivity increasing .

Crossref
View Publication Preview PDF
Publication Date
Wed Nov 01 2017
Journal Name
International Journal Of Chemtech Research
Effect of capillary tube on structural and Optical Properties of SnO2 Thin Films Prepared by APCVD

Abstract : Tin oxide SnO2 films were prepared by atmospheric chemical vapor deposition (APCVD) technique. Our study focus on prepare SnO2 films by using capillary tube as deposition nozzle and the effect of these tubes on the structural properties and optical properties of the prepared samples. X-ray diffraction (XRD) was employed to find the crystallite size. (XRD) studies show that the structure of a thin films changes from polycrystalline to amorphous by increasing the number of capillary tubes used in sample preparation. Maximum transmission can be measured is (95%) at three capillary tube. (AFM) where use to analyze the morphology of the tin oxides surface. Roughness and average grain size for different number of capillary tubes have b

... Show More
Preview PDF
Publication Date
Tue Oct 02 2018
Journal Name
Iraqi Journal Of Physics
Gas sensitivity properties of TiO2/Ag nanocomposite films prepared by pulse laser deposition

In this study, a double frequency Q-switching Nd:YAG laser beam (1064 nm and λ= 532 nm, repetition rate 6 Hz and the pulse duration 10ns) have been used, to deposit TiO2 pure and nanocomposites thin films with noble metal (Ag) at various concentration ratios of (0, 10, 20, 30, 40 and 50 wt.%) on glass and p-Si wafer (111) substrates using Pulse Laser Deposition (PLD) technique. Many growth parameters have been considered to specify the optimum condition, namely substrate temperature (300˚C), oxygen pressure (2.8×10-4 mbar), laser energy (700) mJ and the number of laser shots was 400 pulses with thickness of about 170 nm. The surface morphology of the thin films has been studied by using atomic force microscopes (AFM). The Root Mean Sq

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sun Dec 02 2018
Journal Name
Iraqi Journal Of Physics
Optical properties for TiO2 / PMMA nanocomposite thin films prepared by plasma jet

PMMA/TiO2 homogeneous thin films were deposited by using plasma jet system under normal atmospheric pressure and room temperature. PMMA/TiO2 nanocomposite thin film synthesized by plasma polymerization. Titanium oxide was mixed with Methyl Methacrylate Monomer (MMA) with specific weight ratios (1, 3 and 5 grams of TiO2 per 100 ml of MMA). Optical properties of PMMA/TiO2 nanocomposite thin films were characterized by UV-Visible absorption spectra using a double beam UV-Vis-NIR Spectrophotometer. The thin films surface morphological analysis is carried out by employing SEM. The structure analysis are achieved by X-ray diffraction. UV-Visible absorption spectra shows that the increasing the concentration of titanium oxide added to the polym

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Tue Jan 01 2013
Journal Name
International Journal Of Science And Technology (ijst)
Publication Date
Wed Dec 13 2017
Journal Name
Al-khwarizmi Engineering Journal
Synthesis and Characterization of Nanocrystalline Zeolite Y

Worldwide attention is being focused on  nanocrystalline  zeolites  and they are replacing conventional ones due to their pronounced potential in many fields. In this study, NaY zeolite has been prepared hydrothermally using sol –gel method and modified to the proton type by ion –exchange process. Characterization is made using X-ray diffraction (XRD), thermogravimetric analysis (TGA),  Fourier transform infrared spectroscopy (FTIR),  Atomic force microscopy (AFM), Brunauer –Emmet- Teller (BET) nitrogen adsorption method, Ammonia Temperature programmed desorption (NH3-TPD) and Scanning electron microscopy( SEM).  The effect of aging time, silica to alumina ratio is studied and the results sh

... Show More
View Publication Preview PDF
Publication Date
Sun Nov 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Effect of Cu doping on the electrical Properties of ZnTe by Vacuum Thermal Evaporation

In this study, the ZnTe thin films were deposited on a glass substrate at a thickness of 400nm using vacuum evaporation technique (2×10-5mbar) at RT. Electrical conductivity and Hall effect measurements have been investigated as a function of variation of the doping ratios (3,5,7%) of the Cu element on the thin ZnTe films. The temperature range of (25-200°C) is to record the electrical conductivity values. The results of the films have two types of transport mechanisms of free carriers with two values of activation energy (Ea1, Ea2), expect 3% Cu. The activation energy (Ea1) increased from 29meV to 157meV before and after doping (Cu at 5%) respectively. The results of Hal

... Show More
Crossref (1)
Crossref
View Publication Preview PDF