Response surface methodology (RSM) based on central composite design was successfully applied to redesign MRS media for maximizing both biomass and bacteriocin production from Lactobacillus plantarum NH40. First, glucose and yeast extract were chosen as the best carbon and nitrogen sources based on classical optimization results of one factor at time which also revealed the possibility of eliminating peptone and meat extract from the original composition of medium without affecting the growth and bacteriocin production. Statistical experimental design based on a regression model generated using the Design expert 7 software showed that the optimum concentrations of glucose, yeast extract, tween80, NH4Cr, CH3COONa and K2PO4 were 40, 19.9, 1, 3.06, 7, 1.25 g/L respectively for maximum production of biomass (15.87 mg/mL) and bacteriocin (634.74 U/mL). In addition, from the analysis of variance, yeast extract with F-value 77.2 and glucose with 185.4 were the most effective factors on biomass and bacteriocin production. Formulation of empirical model explained that the interaction among factors showed that the determination coefficient R2 of biomass and bacteriocin production were 0.8777 and 0.8539 respectively. Furthermore, the accuracy of model of the optimized MRS medium suggested by design expert 7 for both biomass and bacteriocin was verified and results showed that concentrations of biomass and bacteriocin were 15 mg/mL and 640AU/mL respectively, which were approximately closed to predicted values.
This paper deals with the numerical solution of the discrete classical optimal control problem (DCOCP) governing by linear hyperbolic boundary value problem (LHBVP). The method which is used here consists of: the GFEIM " the Galerkin finite element method in space variable with the implicit finite difference method in time variable" to find the solution of the discrete state equation (DSE) and the solution of its corresponding discrete adjoint equation, where a discrete classical control (DCC) is given. The gradient projection method with either the Armijo method (GPARM) or with the optimal method (GPOSM) is used to solve the minimization problem which is obtained from the necessary conditi
... Show MoreBox-Wilson experimental design method was employed to optimized lead ions removal efficiency by bulk liquid membrane (BLM) method. The optimization procedure was primarily based on four impartial relevant parameters: pH of feed phase (4-6), pH of stripping phase (9-11), carrier concentration TBP (5-10) %, and initial metal concentration (60-120 ppm). maximum recovery efficiency of lead ions is 83.852% was virtually done following thirty one-of-a-kind experimental runs, as exact through 24-Central Composite Design (CCD). The best values for the aforementioned four parameters, corresponding to the most restoration efficiency were: 5, 10, 7.5% (v/v), and 90 mg/l, respectively. The obtained experimental data had been
... Show MoreThe main role of infill drilling is either adding incremental reserves to the already existing one by intersecting newly undrained (virgin) regions or accelerating the production from currently depleted areas. Accelerating reserves from increasing drainage in tight formations can be beneficial considering the time value of money and the cost of additional wells. However, the maximum benefit can be realized when infill wells produce mostly incremental recoveries (recoveries from virgin formations). Therefore, the prediction of incremental and accelerated recovery is crucial in field development planning as it helps in the optimization of infill wells with the assurance of long-term economic sustainabi
Sustainable vegetative management plays a significant role in improving soil quality in degraded agricultural landscapes by enhancing soil microbial biomass. This study investigated the effects of grass buffers (GBs), biomass crops (BCs), grass waterways (GWWs), and agroforestry buffers (ABs) on soil microbial biomass and soil organic C (SOC) compared with continuous corn (
AbstractIn the field of construction materials the glass reinforced mortar and Styrene Butadiene mortar are modern composite materials. This study experimentally investigated the effect of addition of randomly dispersed glass fibers and layered glass fibers on density and compressive strength of mortar with and without the presence of Styrene Butadiene Rubber (SBR). Mixtures of 1:2 cement/sand ratio and 0.5 water/cement ratio were prepared for making mortar. The glass fibers were added by two manners, layers and random with weight percentages of (0.54, 0.76, 1.1 and 1.42). The specimens were divided into two series: glass-fiber reinforced mortar without SBR and glass-fiber reinforced mortar with 7% SBR of mixture water. All s
... Show More
The research aims to identify how to enhance the quality of the human resources, focusing on four dimensions (efficiency, effectiveness, flexibility, and reliability), by adopting an adventure learning method that combines theoretical and applied aspects at the same time, when developing human resources and is applied using information technology, and that Through its dimensions, which are (cooperation, interaction, communication, and understanding), as the research problem indicated a clear deficiency in the cognitive perception of the mechanism of employing adventure learning dimensions in enhancing human resources quality, so the importance of research was to present treatments and proposals to reduce this problem. To achieve
... Show MoreThe study area lies in Wasit governorate south west Kut city, where Al Ahdeb oil field is located to the south of Al Ahrar district. The present study deals with assessment of heavy metals pollution in water by collecting eleven water samples (five samples from drainage and six samples from surface water) in 5th of December 2016. The water samples analysis of heavy elements in the study area shown that water is polluted with high concentration of (Pb, Cd) elements, while the concentration of (Cu, Fe, Zn) in water samples are within the permissible limits of both World Health Organization, and Iraqi standards and there are no hazard effects from these elements. The study detected some diseases that inju
... Show MoreThis study aimed to obtain a local isolation of Aspergillus niger and then studied its ability to produce citric acid from raw materials available locally using solid state fermentation. Six local isolates were collected from different sources including some samples of the damaged fruits such as grapefruit, oranges and sindi. Wheat bran was used as a raw material or as culture medium for the production of citric acid from the collected isolates. The conditions for citric acid production were determined by humidity percentage of 1: 1 (water: culture medium), temperature of 28 C, pH 4 and inoculum dose with 5× 106 spore/ml and for 3 days of incubation. The orange was the best model for citric acid production with a concentration of 12.8 mg/m
... Show MoreIn this work, a novel biocatalytic process for the production of 7-methylxanthines from theobromine, an economic feedstock has been developed. Bench scale production of 7-methlxanthine has been demonstrated. The biocatalytic process used in this work operates at 30 OC and atmospheric pressure, and is environmentally friendly. The biocatalyst was E. coli BL21(DE3) engineered with ndmB/D genes combinations. These modifications enabled specific N7- demethylation of theobromine to 7-methylxanthine. This production process consists of uniform fermentation conditions with a specific metabolically engineered strain, uniform induction of specific enzymes for 7-methylxanthine production, uniform recovery an
... Show MoreThe current study aims to produce cellulase enzyme from Streptomyces spp. isolates and study the effect of some cultural conditions on cellulase production; biofuel production from cellulotic waste through enzymatic and acids hydrolysis. Out of 74 isolates of Streptomyces sp. were screened for cellulse production in solid and liquid media. Results showed higher capability of isolate Streptomyces sp. B 167 for cellulase production and bioconversion of cellulose, therefore selected for further studies. The results of optimization revealed that the cellulase enzyme productivity by the selected isolate reached 2.1 and 2.28 U/ml after 48 h of incubation time and pH 7 respectively. Cellulase productions in tested isolate improved (2.57 U/ml) b
... Show More