Response surface methodology (RSM) based on central composite design was successfully applied to redesign MRS media for maximizing both biomass and bacteriocin production from Lactobacillus plantarum NH40. First, glucose and yeast extract were chosen as the best carbon and nitrogen sources based on classical optimization results of one factor at time which also revealed the possibility of eliminating peptone and meat extract from the original composition of medium without affecting the growth and bacteriocin production. Statistical experimental design based on a regression model generated using the Design expert 7 software showed that the optimum concentrations of glucose, yeast extract, tween80, NH4Cr, CH3COONa and K2PO4 were 40, 19.9, 1, 3.06, 7, 1.25 g/L respectively for maximum production of biomass (15.87 mg/mL) and bacteriocin (634.74 U/mL). In addition, from the analysis of variance, yeast extract with F-value 77.2 and glucose with 185.4 were the most effective factors on biomass and bacteriocin production. Formulation of empirical model explained that the interaction among factors showed that the determination coefficient R2 of biomass and bacteriocin production were 0.8777 and 0.8539 respectively. Furthermore, the accuracy of model of the optimized MRS medium suggested by design expert 7 for both biomass and bacteriocin was verified and results showed that concentrations of biomass and bacteriocin were 15 mg/mL and 640AU/mL respectively, which were approximately closed to predicted values.
In this study, successive electrocoagulation (EC) and electro-oxidation (EO) processes were used to minimize some of the major pollutants in real wastewater, such as organics (detected by chemical oxygen demand (COD)), and turbidity. The wastewater utilized in the present study was collected from the Midland Refinery Company in Baghdad-Iraq. The performance of the successive batch EC-EO processes was studied by utilizing Graphite and Aluminum (Al) as monopolar anode electrodes and stainless steel (st.st.) as the cathode. The Taguchi experimental design approach was used to attain the best experimental conditions for COD reduction as a major response. Starting from chemical oxygen demand COD of (600 ppm), the effects of current density (C
... Show MoreThis study was carried out to obtain the optimum conditions necessary for the process of soya protein hydrolysis by using hydrochloric acid (as a chemical catalyst) instead of the papain enzyme (as a biological catalyst), for the production of soya peptone. These conditions are implemented to test the effect of the variables of the process of hydrolysis on the nature and quality of the product.
The production of soya peptone was studied for their importance in the process of preparing and producing the culture media used in medical and microbiological laboratories.
The process of production of soya peptone includes four main
... Show MoreEfficient and cost-effective drilling of directional wells necessitates the implementation of best drilling practices and advanced techniques to optimize drilling operations. Failure to adequately consider drilling risks can result in inefficient drilling operations and non-productive time (NPT). Although advanced drilling techniques may be expensive, they offer promising technical solutions for mitigating drilling risks. This paper aims to demonstrate the effectiveness of advanced drilling techniques in mitigating risks and improving drilling operations when compared to conventional drilling techniques. Specifically, the advanced drilling techniques employed in Buzurgan Oil Field, including vertical drilling with mud motor, managed pres
... Show MoreThe experiment was conducted in the fields belonging to the Department of Horticulture, College of Agricultural Engineering Sciences, University of Baghdad, at Al-Jadriya Complex / Station A, for the autumn season of 2022-2023. The aim was to study the effect of water fish irrigation and water lens plant extract foliar application on the growth and productivity of beetroot. The experiment included two factors: the first factor was water fish irrigation with five concentrations (A) Control treatment (irrigation with river water and recommended fertilization), (B) Water fish irrigation at 25% concentration, (C) water Fish irrigation at 50% concentration, (D) Water Fish irrigation at 75%
A total of (25) stool samples were collected from children and adults (2- 4) years old suffering from diarrhea to isolate E. coli strains that produce heat-stable enterotoxin a (STa), and after performing microscopic examination, cultural characterization and biochemical identification only (11) isolates showed positive E. coli. STa activity was estimated by using suckling mouse assay (SMA) and from these (11) isolates only (5) showed STa activity and the one with the highest STa activity was selected for large scale production of STa, which was followed by partial purification using ion-exchange chromatography (normal phase) using DEAE sephadex A-50 column. After purification and determination of protein concentration by using the standard
... Show MoreAnaerobic digestion (AD) is the most common process for dealing with primary and secondary wastewater sludge. In the present work, four pre-treatment methods (ultrasonic, chemical, thermal, and thermo-chemical) are investigated in Al-Rustumya Wastewater Treatment plant in order to find their effect on biogas production and volatile solid removal efficiency during anaerobic digestion.
Two frequencies of ultrasonic wave were used 30 KHz and 50 KHz during the pre-treatment. Sodium hydroxide was added in different amounts to give three pH values of 9, 10 and 11 in chemical pre-treating processes. The sludge was heated at 60oC and 80oC through thermal pre-treatment experiment. Also, the sludge was treated thermo-chemically at 80 oC and pH
This study aims to remove Cd(II) ions from simulated wastewater by using Chlorophyceae algae (CA). Different parameters were studied to show their effects on the biosorption efficiency of CA. These parameters are: the effect of pH 3-7, initial metal ion concentration 20-200 mg/L, sorbent dos-age 0.05-2 g/L, contact time 5-180 min, and agitation speed 100-300 rpm. We found that both the Langmuir and Freundlich models appropriate for characterizing the metal removal process. The biosorption data fit best with the results of the pseudo-second-order kinetic model, demonstrating that the chemisorption process is the dominant mechanism controlling the removal. CA was char-acterized using the scanning electron microscopy test, prior to and post bi
... Show MoreThe present study was conducted to estimate the antimicrobial activity and the potential biological control of the killer toxin produced by
The research was conducted in a plastic greenhouse at the College of Agricultural Engineering Sciences, University of Baghdad - Jadiriyah Campus, during the 2021-2022 season, to study the effect of phosphorus, silicon, and citric acid on pepper plants using a factorial experiment design with three replicates. The first factor had three levels of phosphorus (0, 160, and 320 kg P2O5 per hectare), the second factor had three levels of potassium silicate (0, 75, and 100 kg per hectare), and the third factor had four levels of citric acid (0, 2, 4, and 6 kg per hectare). The statistical analysis showed that treatment P2S2C1 resulted in an increase
Fifty isolates of Bacillus sp. were subjected to the first and second screening to detect the ability to produce laccase enzyme and select the highest ones production of laccase on Petri plates containing nutrient agar supplemented with Cu2+.
Syringaldazine was used as an indicator and substrate for the determination of laccase activity. Three isolates, which consumed less time to developed pink color were tested for the production of laccase quantitatively. The effective isolate B16 with significant amounts of laccase 1.84 unit /ml was selected for laccase study.
The optimization studies revealed that the maximum laccase production was achieved when the production medium was at the following conditions: 5 days of incubation, tempe