Dielectric measurements were carried on pure and doping potassium sulfate with copper and iron ions samples at 1wt.% and 3wt.% for both of copper and iron. The dielectric constant (ε') decreases exponentially from 2.8 to 1.5 as frequency increase for both dopant which is attributed to the space charge and structural distortion. The dielectric loss (ε") for Cu dopant decrease gradually with frequency. The same behavior for 1%Fe dopant while its 3%Fe doping started from 0.27 then decrease exponential. Band gaps for all samples almost constant around 6 eV.
Echocardiography is a widely used imaging technique to examine various cardiac functions, especially to detect the left ventricular wall motion abnormality. Unfortunately the quality of echocardiograph images and complexities of underlying motion captured, makes it difficult for an in-experienced physicians/ radiologist to describe the motion abnormalities in a crisp way, leading to possible errors in diagnosis. In this study, we present a method to analyze left ventricular wall motion, by using optical flow to estimate velocities of the left ventricular wall segments and find relation between these segments motion. The proposed method will be able to present real clinical help to verify the left ventricular wall motion diagnosis.
In this work preparation of antireflection coating with single layer of MgO using pulsed laser deposition (PLD) method which deposit on glass substrate with different thicknesses (90 and 100) nm annealed at temperature 500 K was done.
The optical and structural properties (X-ray diffraction) have been determined. The optical reflectance was computed with the aid of MATLAB over the visible and near infrared region. Results shows that the best result obtained for optical performance of AR'Cs at 700 shots with thickness 90 nm nanostructure single layer AR'Cs and low reflection at wavelength 550 nm.
In this paper, a construction microwave induced plasma jet(MIPJ) system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate using flow meter regulator. The influence of the MIPJ parameters such as applied voltage and argon gas flow rate on macroscopic microwave plasma parameters were studied. The macroscopic parameters results show increasing of microwave plasma jet length with increasing of applied voltage, argon gas flow rate where the plasma jet length exceed 12 cm as maximum value. While the increasing of argon gas flow rate will cause increasing into the ar
... Show MoreThis survey investigates the thermal evaporation of Ag2Se on glass substrates at various thermal
annealing temperatures (300, 348, 398, and 448) °K. To ascertain the effect of annealing
temperature on the structural, surface morphology, and optical properties of Ag2Se films,
investigations and research were carried out. The crystal structure of the film was described by Xray diffraction and other methods.The physical structure and characteristics of the Ag2Se thin films
were examined using X-ray and atomic force microscopy (AFM) based techniques. The Ag2Se
films surface morphology was examined by AFM techniques; the investigation gave average
diameter, surface roughness, and grain size mutation value
The main goal of this work is to obtain the plasma electron temperature Te by optical emission spectroscopy of low pressure microwave argon plasma, as a function of working pressure and microwave power. A plasma system was designed and constructed in our laboratory using a magnetron of domestic microwave oven with power 800W without any commercial part. The applied voltage on the magnetron electrical circuit is changed for the purpose of obtaining the variable values of the microwave power. The spectral detection is performed with a spectrometer of wavelength range (200−1000nm). The working pressure and magnetron applied voltage were 0.3-3.0mbar and 180-240V, respectively. Two methods had been applied to estimate the electron temperatu
... Show MoreIn this work Polyynes was synthesized by pulse laser ablation of graphite target in ethanol solution. UV-Visible Spectrophotometer, Fourier Transform Infrared Spectroscopy (FTIR) and Transmission electron microscopy (TEM) were used to study the optical absorption, chemical bonding, particle size and the morphology. UV absorption peaks coincide with the electronic transitions corresponding to linear hydrogen – capped polyyne (Cn+1H2), the absorption peaks intensity increased when the polyynes were produced at different laser energies and the formation rats of polyynes increased with the increasing of laser pulse number. The FTIR absorption peak at 2368.4 cm-1, 1640.0 cm-1 and 1276.
... Show MoreThe autocorrelation function calculations have been carried out on photon-limited computer-simulated images of binary stars that recorded through kolmogorov atmospheric turbulence. The effect of the parameters of photon limited binary star on the variation of signal to noise, signal to background ratios, number of images that processed and the magnitude of binary stars are studied and mathematic equations are given to investigate this effect. The result indicates that signal to background ratio of photon limited images of a binary star is independent of the total number of recorded photons.
Chromium oxide (Cr2O3) doped ZnO nanoparticles were prepared by pulsed laser deposition (PLD) technique at different concentration ratios (0, 3, 5, 7 and 9 wt %) of ZnO on glass substrate. The effects of ZnO dopant on the average crystallite size of the synthesized nanoparticles was examined By X-ray diffraction. The morphological features were detected using atomic force microscopy (AFM). The optical band gap value was observed to range between 2.78 to 2.50 eV by UV-Vis absorption spectroscopy, with longer wavelength shifted in comparison with that of the bulk Cr2O3 (~3eV). Gas sensitivity, response, and recovery times of the sensor in the presence of NH3
... Show MoreZnO thin films have been prepared by pulse laser deposition technique at room temperatures (RT). These films were deposited on GaAs substrate to form the ZnO/GaAs heterojunction solar cell. The effect of annealing temperatures at ( RT,100, 200)K on structural and optical properties of ZnO thin films has been investigated. The X-ray diffraction analysis indicated that all films have hexagonal polycrystalline structure. AFM shows that the grains uniformly distributed with homogeneous structure. The optical absorption spectra showed that all films have direct energy gap. The band gap energy of these films decreased with increasing annealing temperatures. From the electrical properties, the carriers have n-type conductivity. From
... Show MoreThe study of green colour in glass has a special importance on the glass quality, specially the effect of ferrous oxides content of the limestone. Results obtained that there was a reduction in green colour when different ferrous oxide contents in the limestone were added in glass production, limestone sources from two quarries, and the first contains 0.67% ferrous oxide and the second posses less ferrous oxide.
Reduction of green colour showed higher transmittance12% and it could be suggested that reduction of ferrous oxides content in the limestone is of special importance on the optical properties of glass.