Dielectric measurements were carried on pure and doping potassium sulfate with copper and iron ions samples at 1wt.% and 3wt.% for both of copper and iron. The dielectric constant (ε') decreases exponentially from 2.8 to 1.5 as frequency increase for both dopant which is attributed to the space charge and structural distortion. The dielectric loss (ε") for Cu dopant decrease gradually with frequency. The same behavior for 1%Fe dopant while its 3%Fe doping started from 0.27 then decrease exponential. Band gaps for all samples almost constant around 6 eV.
Total protein and total fucose were determined in sera of thyroid
disorder patients.
Sera of (40) diagnosed by consultant hyperthyroidism, and 40 hypothyroidism were analyzed for the above parameter for control, sera of (40) normal individuals were used.
They were healthy with no appearing disorder results analysis revealed no significant differences (P<0.05) in the (mean ±SD) of total protein values in sera of hyper and hypothyroidism were compared
... Show MoreDeep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show MoreNitrogen (N) and phosphorus (P) are the most important nutrients for crop production. The N contributes to the structural component, generic, and metabolic compounds in a plant cell. N is mainly an essential part of chlorophyll, the compound in the plants that is responsible for photosynthesis process. The plant can get its available nitrogen from the soil by mineralizing organic materials, fixed-N by bacteria, and nitrogen can be released from plant as residue decay. Soil minerals do not release an enough amount of nitrogen to support plant; therefore, fertilizing is necessary for high production. Phosphorous contributes in the complex of the nucleic acid structure of plants. The nucleic acid is essential in protein synthesis regulation; t
... Show MoreIn this work, the performance of single-mode optical fibers (SMFs) for ultraviolet (UV) radiation monitoring and dosimetry applications is presented. In particular, this work will focus on the Radiation-Induced Absorption (RIA) phenomena in the Near-Infrared domain (NIR). Such phenomena play a very important role in the sensing mechanism for SMF. Single mode fibers with a diameter of 50 µm were used for this purpose. These fibers were dipped into germanium (Ge) solution with different concentrations (1, 3, and 5 wt%) to produce the sensing part of the sensor. For all optical fiber sensors under investigation, the results indicated the dependence of the RIA on the applied UV radiation energy. Also, a redshi
... Show MoreIn this work, excess properties (eg excess molar volume (VE), excess viscosity (ȠE), excess Gibbs free energy of activation of viscos flow (ΔG* E) and molar refraction changes (ΔnD) of binary solvent mixtures of tetrahydrofurfuryl alcohol (THFA) with aromatic hydrocarbons (benzene, toluene and p-xylene) have been calculated. This was achieved by determining the physical properties including density ρ, viscosity Ƞ and refraction index nD of liquid mixtures at 298.15 K. Results of the excess parameters and deviation functions for the binary solvent mixtures at 298.15 K have been discussed by molecular interactions that occur in these mixtures. Generally, parameters showed negative values and have been found to fit well to Redlich-Kister
... Show MoreSurvival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re
... Show More