A network (or formally a graph) can be described by a set of nodes and a set of edges connecting these nodes. Networks model many real-world phenomena in various research domains, such as biology, engineering and sociology. Community mining is discovering the groups in a network where individuals group of membership are not explicitly given. Detecting natural divisions in such complex networks is proved to be extremely NP-hard problem that recently enjoyed a considerable interest. Among the proposed methods, the field of evolutionary algorithms (EAs) takes a remarkable interest. To this end, the aim of this paper is to present the general statement of community detection problem in social networks. Then, it visits the problem as an optimization problem where a modularity-based ( ) and normalized mutual information ( ) metrics are formulated to describe the problem. An evolutionary algorithm is then expressed in the light of its characteristic components to tackle the problem. The presentation will highlight the possible alternative that can be adopted in this study for individual representation, fitness evaluations, and crossover and mutation operators. The results point out that adopting as a fitness function carries out more correct solutions than adopting the modularity function . Moreover, the strength of mutation has a background role. When coupled with non elite selection, increasing mutation probability could results in better solutions. However, when elitism is used, increasing mutation probability could bewilder the behavior of EA.
A network (or formally a graph) can be described by a set of nodes and a set of edges connecting these nodes. Networks model many real-world phenomena in various research domains, such as biology, engineering and sociology. Community mining is discovering the groups in a network where individuals group of membership are not explicitly given. Detecting natural divisions in such complex networks is proved to be extremely NP-hard problem that recently enjoyed a considerable interest. Among the proposed methods, the field of evolutionary algorithms (EAs) takes a remarkable interest. To this end, the aim of this paper is to present the general statement of community detection problem in social networks. Then, it visits the problem as an optimization problem where a modularity-based ( ) and normalized mutual information ( ) metrics are formulated to describe the problem. An evolutionary algorithm is then expressed in the light of its characteristic components to tackle the problem. The presentation will highlight the possible alternative that can be adopted in this study for individual representation, fitness evaluations, and crossover and mutation operators. The results point out that adopting as a fitness function carries out more correct solutions than adopting the modularity function . Moreover, the strength of mutation has a background role. When coupled with non elite selection, increasing mutation probability could results in better solutions. However, when elitism is used, increasing mutation probability could bewilder the behavior of EA.
In education, exams are used to asses students’ acquired knowledge; however, the manual assessment of exams consumes a lot of teachers’ time and effort. In addition, educational institutions recently leaned toward distance education and e-learning due the Coronavirus pandemic. Thus, they needed to conduct exams electronically, which requires an automated assessment system. Although it is easy to develop an automated assessment system for objective questions. However, subjective questions require answers comprised of free text and are harder to automatically assess since grading them needs to semantically compare the students’ answers with the correct ones. In this paper, we present an automatic short answer grading metho
... Show MoreAutomated medical diagnosis is an important topic, especially in detection and classification of diseases. Malaria is one of the most widespread diseases, with more than 200 million cases, according to the 2016 WHO report. Malaria is usually diagnosed using thin and thick blood smears under a microscope. However, proper diagnosis is difficult, especially in poor countries where the disease is most widespread. Therefore, automatic diagnostics helps in identifying the disease through images of red blood cells, with the use of machine learning techniques and digital image processing. This paper presents an accurate model using a Deep Convolutional Neural Network build from scratch. The paper also proposed three CNN
... Show MoreThe inefficient use of spectrum is the key subject to overcome the upcoming spectrum crunch issue. This paper presents a study of performance of cooperative cognitive network via hard combining of decision fusion schemes. Simulation results presented different cooperative hard decision fusion schemes for cognitive network. The hard-decision fusion schemes provided different discriminations for detection levels. They also produced small values of Miss-Detection Probability at different values of Probability of False Alarm and adaptive threshold levels. The sensing performance was investigated under the influence of channel condition for proper operating conditions. An increase in the detection performance was achi
... Show MoreSensing insole systems are a promising technology for various applications in healthcare and sports. They can provide valuable information about the foot pressure distribution and gait patterns of different individuals. However, designing and implementing such systems poses several challenges, such as sensor selection, calibration, data processing, and interpretation. This paper proposes a sensing insole system that uses force-sensitive resistors (FSRs) to measure the pressure exerted by the foot on different regions of the insole. This system classifies four types of foot deformities: normal, flat, over-pronation, and excessive supination. The classification stage uses the differential values of pressure points as input for a feedforwar
... Show MoreThis work implements the face recognition system based on two stages, the first stage is feature extraction stage and the second stage is the classification stage. The feature extraction stage consists of Self-Organizing Maps (SOM) in a hierarchical format in conjunction with Gabor Filters and local image sampling. Different types of SOM’s were used and a comparison between the results from these SOM’s was given.
The next stage is the classification stage, and consists of self-organizing map neural network; the goal of this stage is to find the similar image to the input image. The proposal method algorithm implemented by using C++ packages, this work is successful classifier for a face database consist of 20
... Show MoreThe Indonesian language is used as a means of communication, including written communication. Unfortunately, many mistakes are found in Indonesian language writing, such as the writing of active verbs with the prefix mem- followed by the letter P. This problem can be addressed with the spell-checking method. Spell checking is a process in computer programs to check the spelling of each word in electronic text or documents in the correct order. To better the active verb this study used the Jaro-Winkler Distance algorithm. Meanwhile, for system development, the Iterative Waterfall method was used. The system output is active verbs of mem- + P which is standardized according to the Great Dictionary of the In
... Show MoreThe estimation of the parameters of linear regression is based on the usual Least Square method, as this method is based on the estimation of several basic assumptions. Therefore, the accuracy of estimating the parameters of the model depends on the validity of these hypotheses. The most successful technique was the robust estimation method which is minimizing maximum likelihood estimator (MM-estimator) that proved its efficiency in this purpose. However, the use of the model becomes unrealistic and one of these assumptions is the uniformity of the variance and the normal distribution of the error. These assumptions are not achievable in the case of studying a specific problem that may include complex data of more than one model. To
... Show MoreThe Rivest–Shamir–Adleman (RSA) and the Diffie-Hellman (DH) key exchange are famous methods for encryption. These methods depended on selecting the primes p and q in order to be secure enough . This paper shows that the named methods used the primes which are found by some arithmetical function .In the other sense, no need to think about getting primes p and q and how they are secure enough, since the arithmetical function enable to build the primes in such complicated way to be secure. Moreover, this article gives new construction of the RSA algorithm and DH key exchange using the
primes p,qfrom areal number x.
An analytical and clinical study has been applied for measure the bioavailability of Zinc in serum of twenty adults healthy volunteers, using flame atomic absorption spectrophotometer (FAAS) at 213.9 nm. The calibration graph is linear in the ranges of 0.25-1.5 μg.mL-1 with correlation coefficient (R) 0.09996)μg.mL1-and molar absorpitivites 22957.76(L.mol1-cm-1.The concentration of Zinc determined in serum of all volunteers before and after administered orally a tablet of 50 mg zinc sulphate, produced by Samara drugs company (SDI). All data were subjected to statistical analysis by calculating accuracy, precision in addition to other parameters. The results indicate that the average maximum concentration (C-max ± SD) of blood zinc was 0.
... Show More